|
24 | 24 | }, |
25 | 25 | { |
26 | 26 | "cell_type": "code", |
27 | | - "execution_count": 1, |
| 27 | + "execution_count": 6, |
28 | 28 | "metadata": {}, |
29 | 29 | "outputs": [], |
30 | 30 | "source": [ |
|
42 | 42 | }, |
43 | 43 | { |
44 | 44 | "cell_type": "code", |
45 | | - "execution_count": 2, |
| 45 | + "execution_count": 7, |
46 | 46 | "metadata": {}, |
47 | 47 | "outputs": [ |
48 | 48 | { |
|
64 | 64 | "weather = basic_example.get_weather_data('weather.csv')\n", |
65 | 65 | "print(weather[['wind_speed', 'temperature', 'pressure']][0:3])\n", |
66 | 66 | "\n", |
67 | | - "# Initialise wind turbines\n", |
68 | | - "my_turbine, e126 = basic_example.initialise_wind_turbines()\n", |
| 67 | + "# Initialize wind turbines\n", |
| 68 | + "my_turbine, e126 = basic_example.initialize_wind_turbines()\n", |
69 | 69 | "print()\n", |
70 | 70 | "print('nominal power of my_turbine: {}'.format(my_turbine.nominal_power))" |
71 | 71 | ] |
|
74 | 74 | "cell_type": "markdown", |
75 | 75 | "metadata": {}, |
76 | 76 | "source": [ |
77 | | - "### Initialise wind farm\n", |
| 77 | + "### Initialize wind farm\n", |
78 | 78 | "\n", |
79 | | - "To initialise a specific wind farm you can use a dictionary that contains the basic parameters. A wind farm is defined by its name, wind turbine fleet, and optionally also by a wind farm efficiency and the wind farm's location.\n", |
| 79 | + "To initialize a specific wind farm you can use a dictionary that contains the basic parameters. A wind farm is defined by its name, wind turbine fleet, and optionally also by a wind farm efficiency and the wind farm's location.\n", |
80 | 80 | "\n", |
81 | 81 | "A wind farm efficiency can be a constant value or be dependent on the wind speed. The coordinates are not being used here but are necessary if you need to assign your find farm to a certain weather data point." |
82 | 82 | ] |
83 | 83 | }, |
84 | 84 | { |
85 | 85 | "cell_type": "code", |
86 | | - "execution_count": 3, |
| 86 | + "execution_count": 8, |
87 | 87 | "metadata": {}, |
88 | 88 | "outputs": [], |
89 | 89 | "source": [ |
|
95 | 95 | " {'wind_turbine': e126,\n", |
96 | 96 | " 'number_of_turbines': 3}\n", |
97 | 97 | " ]}\n", |
98 | | - "# initialise WindFarm object\n", |
| 98 | + "# initialize WindFarm object\n", |
99 | 99 | "example_farm = WindFarm(**example_farm_data)" |
100 | 100 | ] |
101 | 101 | }, |
102 | 102 | { |
103 | 103 | "cell_type": "code", |
104 | | - "execution_count": 4, |
| 104 | + "execution_count": 9, |
105 | 105 | "metadata": {}, |
106 | 106 | "outputs": [ |
107 | 107 | { |
|
124 | 124 | " 'efficiency': 0.9,\n", |
125 | 125 | " 'coordinates': [52.2, 13.1]}\n", |
126 | 126 | "\n", |
127 | | - "# initialise WindFarm object\n", |
| 127 | + "# initialize WindFarm object\n", |
128 | 128 | "example_farm_2 = WindFarm(**example_farm_2_data)\n", |
129 | 129 | "\n", |
130 | 130 | "print('nominal power of first turbine type of example_farm_2: {}'.format(\n", |
|
135 | 135 | "cell_type": "markdown", |
136 | 136 | "metadata": {}, |
137 | 137 | "source": [ |
138 | | - "### Initialise wind turbine cluster\n", |
| 138 | + "### Initialize wind turbine cluster\n", |
139 | 139 | "\n", |
140 | 140 | "Like for a wind farm for the initialization of a wind turbine cluster you can use a dictionary that contains the basic parameters. A wind turbine cluster is defined by its name, wind farms and optionally by its location." |
141 | 141 | ] |
142 | 142 | }, |
143 | 143 | { |
144 | 144 | "cell_type": "code", |
145 | | - "execution_count": 5, |
| 145 | + "execution_count": 10, |
146 | 146 | "metadata": {}, |
147 | 147 | "outputs": [], |
148 | 148 | "source": [ |
|
151 | 151 | " 'name': 'example_cluster',\n", |
152 | 152 | " 'wind_farms': [example_farm, example_farm_2]}\n", |
153 | 153 | "\n", |
154 | | - "# initialise WindTurbineCluster object\n", |
| 154 | + "# initialize WindTurbineCluster object\n", |
155 | 155 | "example_cluster = WindTurbineCluster(**example_cluster_data)\n" |
156 | 156 | ] |
157 | 157 | }, |
|
170 | 170 | }, |
171 | 171 | { |
172 | 172 | "cell_type": "code", |
173 | | - "execution_count": 6, |
| 173 | + "execution_count": 11, |
174 | 174 | "metadata": {}, |
175 | 175 | "outputs": [ |
176 | 176 | { |
177 | 177 | "name": "stderr", |
178 | 178 | "output_type": "stream", |
179 | 179 | "text": [ |
| 180 | + "DEBUG:root:Wake losses considered by dena_mean wind efficiency curve.\n", |
| 181 | + "DEBUG:root:Aggregated power curve smoothed by method: turbulence_intensity\n", |
180 | 182 | "DEBUG:root:Calculating wind speed using logarithmic wind profile.\n", |
181 | 183 | "DEBUG:root:Calculating power output using power curve.\n" |
182 | 184 | ] |
183 | 185 | } |
184 | 186 | ], |
185 | 187 | "source": [ |
186 | 188 | "# power output calculation for example_farm\n", |
187 | | - "# initialise TurbineClusterModelChain with default parameters and use\n", |
| 189 | + "# initialize TurbineClusterModelChain with default parameters and use\n", |
188 | 190 | "# run_model method to calculate power output\n", |
189 | 191 | "mc_example_farm = TurbineClusterModelChain(example_farm).run_model(weather)\n", |
190 | 192 | "# write power output time series to WindFarm object\n", |
|
193 | 195 | }, |
194 | 196 | { |
195 | 197 | "cell_type": "code", |
196 | | - "execution_count": 7, |
| 198 | + "execution_count": 12, |
197 | 199 | "metadata": {}, |
198 | 200 | "outputs": [ |
199 | 201 | { |
200 | 202 | "name": "stderr", |
201 | 203 | "output_type": "stream", |
202 | 204 | "text": [ |
| 205 | + "DEBUG:root:Wake losses considered with constant_efficiency.\n", |
| 206 | + "DEBUG:root:Aggregated power curve smoothed by method: Staffell_Pfenninger\n", |
203 | 207 | "DEBUG:root:Calculating wind speed using logarithmic wind profile.\n", |
204 | 208 | "DEBUG:root:Calculating temperature using temperature gradient.\n", |
205 | 209 | "DEBUG:root:Calculating density using ideal gas equation.\n", |
|
240 | 244 | " 'density_correction': True, # False (default) or True\n", |
241 | 245 | " 'obstacle_height': 0, # default: 0\n", |
242 | 246 | " 'hellman_exp': None} # None (default) or None\n", |
243 | | - "# initialise TurbineClusterModelChain with own specifications and use\n", |
| 247 | + "# initialize TurbineClusterModelChain with own specifications and use\n", |
244 | 248 | "# run_model method to calculate power output\n", |
245 | 249 | "mc_example_cluster = TurbineClusterModelChain(\n", |
246 | 250 | " example_cluster, **modelchain_data).run_model(weather)\n", |
|
254 | 258 | "source": [ |
255 | 259 | "### Plot results\n", |
256 | 260 | "\n", |
257 | | - "If you have matplotlib installed you can visualise the calculated power output." |
| 261 | + "If you have matplotlib installed you can visualize the calculated power output." |
258 | 262 | ] |
259 | 263 | }, |
260 | 264 | { |
261 | 265 | "cell_type": "code", |
262 | | - "execution_count": 8, |
| 266 | + "execution_count": 13, |
263 | 267 | "metadata": {}, |
264 | 268 | "outputs": [ |
265 | 269 | { |
|
282 | 286 | }, |
283 | 287 | { |
284 | 288 | "cell_type": "code", |
285 | | - "execution_count": 9, |
| 289 | + "execution_count": 14, |
286 | 290 | "metadata": {}, |
287 | 291 | "outputs": [ |
288 | 292 | { |
|
316 | 320 | " example_farm.power_output.plot(legend=True, label='example farm')\n", |
317 | 321 | " plt.show()" |
318 | 322 | ] |
319 | | - }, |
320 | | - { |
321 | | - "cell_type": "code", |
322 | | - "execution_count": null, |
323 | | - "metadata": {}, |
324 | | - "outputs": [], |
325 | | - "source": [] |
326 | 323 | } |
327 | 324 | ], |
328 | 325 | "metadata": { |
|
0 commit comments