Skip to content

Commit 8b4dc9d

Browse files
committed
Further spelling adaptions
1 parent 4482868 commit 8b4dc9d

File tree

1 file changed

+24
-27
lines changed

1 file changed

+24
-27
lines changed

example/further_example.ipynb

Lines changed: 24 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
},
2525
{
2626
"cell_type": "code",
27-
"execution_count": 1,
27+
"execution_count": 6,
2828
"metadata": {},
2929
"outputs": [],
3030
"source": [
@@ -42,7 +42,7 @@
4242
},
4343
{
4444
"cell_type": "code",
45-
"execution_count": 2,
45+
"execution_count": 7,
4646
"metadata": {},
4747
"outputs": [
4848
{
@@ -64,8 +64,8 @@
6464
"weather = basic_example.get_weather_data('weather.csv')\n",
6565
"print(weather[['wind_speed', 'temperature', 'pressure']][0:3])\n",
6666
"\n",
67-
"# Initialise wind turbines\n",
68-
"my_turbine, e126 = basic_example.initialise_wind_turbines()\n",
67+
"# Initialize wind turbines\n",
68+
"my_turbine, e126 = basic_example.initialize_wind_turbines()\n",
6969
"print()\n",
7070
"print('nominal power of my_turbine: {}'.format(my_turbine.nominal_power))"
7171
]
@@ -74,16 +74,16 @@
7474
"cell_type": "markdown",
7575
"metadata": {},
7676
"source": [
77-
"### Initialise wind farm\n",
77+
"### Initialize wind farm\n",
7878
"\n",
79-
"To initialise a specific wind farm you can use a dictionary that contains the basic parameters. A wind farm is defined by its name, wind turbine fleet, and optionally also by a wind farm efficiency and the wind farm's location.\n",
79+
"To initialize a specific wind farm you can use a dictionary that contains the basic parameters. A wind farm is defined by its name, wind turbine fleet, and optionally also by a wind farm efficiency and the wind farm's location.\n",
8080
"\n",
8181
"A wind farm efficiency can be a constant value or be dependent on the wind speed. The coordinates are not being used here but are necessary if you need to assign your find farm to a certain weather data point."
8282
]
8383
},
8484
{
8585
"cell_type": "code",
86-
"execution_count": 3,
86+
"execution_count": 8,
8787
"metadata": {},
8888
"outputs": [],
8989
"source": [
@@ -95,13 +95,13 @@
9595
" {'wind_turbine': e126,\n",
9696
" 'number_of_turbines': 3}\n",
9797
" ]}\n",
98-
"# initialise WindFarm object\n",
98+
"# initialize WindFarm object\n",
9999
"example_farm = WindFarm(**example_farm_data)"
100100
]
101101
},
102102
{
103103
"cell_type": "code",
104-
"execution_count": 4,
104+
"execution_count": 9,
105105
"metadata": {},
106106
"outputs": [
107107
{
@@ -124,7 +124,7 @@
124124
" 'efficiency': 0.9,\n",
125125
" 'coordinates': [52.2, 13.1]}\n",
126126
"\n",
127-
"# initialise WindFarm object\n",
127+
"# initialize WindFarm object\n",
128128
"example_farm_2 = WindFarm(**example_farm_2_data)\n",
129129
"\n",
130130
"print('nominal power of first turbine type of example_farm_2: {}'.format(\n",
@@ -135,14 +135,14 @@
135135
"cell_type": "markdown",
136136
"metadata": {},
137137
"source": [
138-
"### Initialise wind turbine cluster\n",
138+
"### Initialize wind turbine cluster\n",
139139
"\n",
140140
"Like for a wind farm for the initialization of a wind turbine cluster you can use a dictionary that contains the basic parameters. A wind turbine cluster is defined by its name, wind farms and optionally by its location."
141141
]
142142
},
143143
{
144144
"cell_type": "code",
145-
"execution_count": 5,
145+
"execution_count": 10,
146146
"metadata": {},
147147
"outputs": [],
148148
"source": [
@@ -151,7 +151,7 @@
151151
" 'name': 'example_cluster',\n",
152152
" 'wind_farms': [example_farm, example_farm_2]}\n",
153153
"\n",
154-
"# initialise WindTurbineCluster object\n",
154+
"# initialize WindTurbineCluster object\n",
155155
"example_cluster = WindTurbineCluster(**example_cluster_data)\n"
156156
]
157157
},
@@ -170,21 +170,23 @@
170170
},
171171
{
172172
"cell_type": "code",
173-
"execution_count": 6,
173+
"execution_count": 11,
174174
"metadata": {},
175175
"outputs": [
176176
{
177177
"name": "stderr",
178178
"output_type": "stream",
179179
"text": [
180+
"DEBUG:root:Wake losses considered by dena_mean wind efficiency curve.\n",
181+
"DEBUG:root:Aggregated power curve smoothed by method: turbulence_intensity\n",
180182
"DEBUG:root:Calculating wind speed using logarithmic wind profile.\n",
181183
"DEBUG:root:Calculating power output using power curve.\n"
182184
]
183185
}
184186
],
185187
"source": [
186188
"# power output calculation for example_farm\n",
187-
"# initialise TurbineClusterModelChain with default parameters and use\n",
189+
"# initialize TurbineClusterModelChain with default parameters and use\n",
188190
"# run_model method to calculate power output\n",
189191
"mc_example_farm = TurbineClusterModelChain(example_farm).run_model(weather)\n",
190192
"# write power output time series to WindFarm object\n",
@@ -193,13 +195,15 @@
193195
},
194196
{
195197
"cell_type": "code",
196-
"execution_count": 7,
198+
"execution_count": 12,
197199
"metadata": {},
198200
"outputs": [
199201
{
200202
"name": "stderr",
201203
"output_type": "stream",
202204
"text": [
205+
"DEBUG:root:Wake losses considered with constant_efficiency.\n",
206+
"DEBUG:root:Aggregated power curve smoothed by method: Staffell_Pfenninger\n",
203207
"DEBUG:root:Calculating wind speed using logarithmic wind profile.\n",
204208
"DEBUG:root:Calculating temperature using temperature gradient.\n",
205209
"DEBUG:root:Calculating density using ideal gas equation.\n",
@@ -240,7 +244,7 @@
240244
" 'density_correction': True, # False (default) or True\n",
241245
" 'obstacle_height': 0, # default: 0\n",
242246
" 'hellman_exp': None} # None (default) or None\n",
243-
"# initialise TurbineClusterModelChain with own specifications and use\n",
247+
"# initialize TurbineClusterModelChain with own specifications and use\n",
244248
"# run_model method to calculate power output\n",
245249
"mc_example_cluster = TurbineClusterModelChain(\n",
246250
" example_cluster, **modelchain_data).run_model(weather)\n",
@@ -254,12 +258,12 @@
254258
"source": [
255259
"### Plot results\n",
256260
"\n",
257-
"If you have matplotlib installed you can visualise the calculated power output."
261+
"If you have matplotlib installed you can visualize the calculated power output."
258262
]
259263
},
260264
{
261265
"cell_type": "code",
262-
"execution_count": 8,
266+
"execution_count": 13,
263267
"metadata": {},
264268
"outputs": [
265269
{
@@ -282,7 +286,7 @@
282286
},
283287
{
284288
"cell_type": "code",
285-
"execution_count": 9,
289+
"execution_count": 14,
286290
"metadata": {},
287291
"outputs": [
288292
{
@@ -316,13 +320,6 @@
316320
" example_farm.power_output.plot(legend=True, label='example farm')\n",
317321
" plt.show()"
318322
]
319-
},
320-
{
321-
"cell_type": "code",
322-
"execution_count": null,
323-
"metadata": {},
324-
"outputs": [],
325-
"source": []
326323
}
327324
],
328325
"metadata": {

0 commit comments

Comments
 (0)