77__copyright__ = "Copyright oemof developer group"
88__license__ = "GPLv3"
99
10- from . import modelchain , power_output , tools , wind_farm , wind_turbine_cluster
10+ from . import (modelchain , power_output , tools , wind_farm ,
11+ power_curve , wind_turbine_cluster )
1112import pandas as pd
1213
1314
@@ -32,11 +33,11 @@ class TurbineClusterModelChain(object):
3233 Default: True.
3334 block_width : Float, optional
3435 Width of the moving block.
35- Default in :py:func:`~.power_output .smooth_power_curve`: 0.5.
36+ Default in :py:func:`~.power_curve .smooth_power_curve`: 0.5.
3637 standard_deviation_method : String, optional
3738 Method for calculating the standard deviation for the gaussian
3839 distribution. Options: 'turbulence_intensity', 'Norgaard', 'Staffell'.
39- Default in :py:func:`~.power_output .smooth_power_curve`:
40+ Default in :py:func:`~.power_curve .smooth_power_curve`:
4041 'turbulence_intensity'.
4142 density_correction_order : String
4243 Defines when the density correction takes place if `density_correction`
@@ -66,11 +67,11 @@ class TurbineClusterModelChain(object):
6667 Default: True.
6768 block_width : Float, optional
6869 Width of the moving block.
69- Default in :py:func:`~.power_output .smooth_power_curve`: 0.5.
70+ Default in :py:func:`~.power_curve .smooth_power_curve`: 0.5.
7071 standard_deviation_method : String, optional
7172 Method for calculating the standard deviation for the gaussian
7273 distribution. Options: 'turbulence_intensity', 'Norgaard', 'Staffell'.
73- Default in :py:func:`~.power_output .smooth_power_curve`:
74+ Default in :py:func:`~.power_curve .smooth_power_curve`:
7475 'turbulence_intensity'.
7576 power_output : pandas.Series
7677 Electrical power output of the wind turbine in W.
@@ -167,7 +168,7 @@ def wind_farm_power_curve(self, wind_farm, **kwargs):
167168 pass # TODO: add density correction
168169 if (self .smoothing and
169170 self .smoothing_order == 'turbine_power_curves' ):
170- power_curve = power_output .smooth_power_curve (
171+ power_curve = power_curve .smooth_power_curve (
171172 power_curve ['wind_speed' ], power_curve ['power' ], ** kwargs )
172173 # Add power curves of all turbines of same type to data frame after
173174 # renaming columns
@@ -193,13 +194,13 @@ def wind_farm_power_curve(self, wind_farm, **kwargs):
193194 pass # TODO: add density correction
194195 if (self .smoothing and
195196 self .smoothing_order == 'wind_farm_power_curves' ):
196- summarized_power_curve_df = power_output .smooth_power_curve (
197+ summarized_power_curve_df = power_curve .smooth_power_curve (
197198 summarized_power_curve_df ['wind_speed' ],
198199 summarized_power_curve_df ['power' ], ** kwargs )
199200 if (self .wake_losses_method == 'constant_efficiency' or
200201 self .wake_losses_method == 'wind_efficiency_curve' ):
201202 summarized_power_curve_df = (
202- power_output .wake_losses_to_power_curve (
203+ power_curve .wake_losses_to_power_curve (
203204 summarized_power_curve_df ['wind_speed' ].values ,
204205 summarized_power_curve_df ['power' ].values ,
205206 wake_losses_method = self .wake_losses_method ,
@@ -250,7 +251,7 @@ def turbine_cluster_power_curve(self, **kwargs):
250251 pass # TODO: add density correction
251252 if (self .smoothing and
252253 self .smoothing_order == 'cluster_power_curve' ):
253- summarized_power_curve_df = power_output .smooth_power_curve (
254+ summarized_power_curve_df = power_curve .smooth_power_curve (
254255 summarized_power_curve_df ['wind_speed' ],
255256 summarized_power_curve_df ['power' ], ** kwargs )
256257 return summarized_power_curve_df
0 commit comments