@@ -59,21 +59,27 @@ def initialize_wind_farms(my_turbine, e126):
5959 # that type in the wind farm (float values are possible as well) or the
6060 # total installed capacity of that turbine type in W
6161 wind_turbine_fleet = pd .DataFrame (
62- {'wind_turbine' : [my_turbine , e126 ], # as windpowerlib.WindTurbine
63- 'number_of_turbines' : [6 , None ],
64- 'total_capacity' : [None , 12.6e6 ]}
62+ {
63+ "wind_turbine" : [my_turbine , e126 ], # as windpowerlib.WindTurbine
64+ "number_of_turbines" : [6 , None ],
65+ "total_capacity" : [None , 12.6e6 ],
66+ }
6567 )
6668 # initialize WindFarm object
67- example_farm = WindFarm (name = 'example_farm' ,
68- wind_turbine_fleet = wind_turbine_fleet )
69+ example_farm = WindFarm (
70+ name = "example_farm" , wind_turbine_fleet = wind_turbine_fleet
71+ )
6972
7073 # specification of wind farm data (2) containing a wind farm efficiency
7174 # wind turbine fleet is provided using the to_group function
7275 example_farm_2_data = {
73- 'name' : 'example_farm_2' ,
74- 'wind_turbine_fleet' : [my_turbine .to_group (6 ),
75- e126 .to_group (total_capacity = 12.6e6 )],
76- 'efficiency' : 0.9 }
76+ "name" : "example_farm_2" ,
77+ "wind_turbine_fleet" : [
78+ my_turbine .to_group (6 ),
79+ e126 .to_group (total_capacity = 12.6e6 ),
80+ ],
81+ "efficiency" : 0.9 ,
82+ }
7783 # initialize WindFarm object
7884 example_farm_2 = WindFarm (** example_farm_2_data )
7985
@@ -104,8 +110,9 @@ def initialize_wind_turbine_cluster(example_farm, example_farm_2):
104110
105111 # specification of cluster data
106112 example_cluster_data = {
107- 'name' : 'example_cluster' ,
108- 'wind_farms' : [example_farm , example_farm_2 ]}
113+ "name" : "example_cluster" ,
114+ "wind_farms" : [example_farm , example_farm_2 ],
115+ }
109116 # initialize WindTurbineCluster object
110117 example_cluster = WindTurbineCluster (** example_cluster_data )
111118
@@ -144,35 +151,36 @@ class that provides all necessary steps to calculate the power output of a
144151 # power output calculation for turbine_cluster
145152 # own specifications for TurbineClusterModelChain setup
146153 modelchain_data = {
147- ' wake_losses_model' :
148- 'wind_farm_efficiency' , # 'dena_mean' (default), None,
149- # 'wind_farm_efficiency' or name
150- # of another wind efficiency curve
151- # see :py:func:`~.wake_losses.get_wind_efficiency_curve`
152- 'smoothing' : True , # False ( default) or True
153- 'block_width' : 0.5 , # default: 0.5
154- 'standard_deviation_method' : 'Staffell_Pfenninger' , #
155- # 'turbulence_intensity' (default)
156- # or 'Staffell_Pfenninger'
157- 'smoothing_order' : 'wind_farm_power_curves' , #
158- # 'wind_farm_power_curves' (default) or
159- # 'turbine_power_curves'
160- 'wind_speed_model' : 'logarithmic' , # 'logarithmic' (default),
161- # 'hellman' or
162- # 'interpolation_extrapolation'
163- 'density_model' : 'ideal_gas' , # 'barometric' (default), 'ideal_gas' or
164- # 'interpolation_extrapolation'
165- 'temperature_model' : 'linear_gradient' , # 'linear_gradient' (def.) or
166- # 'interpolation_extrapolation'
167- 'power_output_model' : 'power_curve' , # 'power_curve' (default) or
168- # 'power_coefficient_curve'
169- 'density_correction' : True , # False ( default) or True
170- 'obstacle_height' : 0 , # default: 0
171- 'hellman_exp' : None } # None (default) or None
154+ " wake_losses_model" : "wind_farm_efficiency" , # 'dena_mean' (default), None,
155+ # 'wind_farm_efficiency' or name
156+ # of another wind efficiency curve
157+ # see :py:func:`~.wake_losses.get_wind_efficiency_curve`
158+ "smoothing" : True , # False (default) or True
159+ "block_width" : 0.5 , # default: 0.5
160+ "standard_deviation_method" : "Staffell_Pfenninger" , #
161+ # 'turbulence_intensity' (default)
162+ # or 'Staffell_Pfenninger'
163+ "smoothing_order" : "wind_farm_power_curves" , #
164+ # 'wind_farm_power_curves' (default) or
165+ # 'turbine_power_curves'
166+ "wind_speed_model" : "logarithmic" , # 'logarithmic' (default),
167+ # 'hellman' or
168+ # 'interpolation_extrapolation'
169+ "density_model" : "ideal_gas" , # 'barometric' (default), 'ideal_gas' or
170+ # 'interpolation_extrapolation'
171+ "temperature_model" : "linear_gradient" , # 'linear_gradient' (def.) or
172+ # 'interpolation_extrapolation'
173+ "power_output_model" : "power_curve" , # 'power_curve' (default) or
174+ # 'power_coefficient_curve'
175+ "density_correction" : True , # False (default) or True
176+ "obstacle_height" : 0 , # default: 0
177+ "hellman_exp" : None ,
178+ } # None (default) or None
172179 # initialize TurbineClusterModelChain with own specifications and use
173180 # run_model method to calculate power output
174181 mc_example_cluster = TurbineClusterModelChain (
175- example_cluster , ** modelchain_data ).run_model (weather )
182+ example_cluster , ** modelchain_data
183+ ).run_model (weather )
176184 # write power output time series to WindTurbineCluster object
177185 example_cluster .power_output = mc_example_cluster .power_output
178186
@@ -209,11 +217,12 @@ def run_example():
209217 Runs the example.
210218
211219 """
212- weather = mc_e .get_weather_data (' weather.csv' )
220+ weather = mc_e .get_weather_data (" weather.csv" )
213221 my_turbine , e126 , dummy_turbine = mc_e .initialize_wind_turbines ()
214222 example_farm , example_farm_2 = initialize_wind_farms (my_turbine , e126 )
215- example_cluster = initialize_wind_turbine_cluster (example_farm ,
216- example_farm_2 )
223+ example_cluster = initialize_wind_turbine_cluster (
224+ example_farm , example_farm_2
225+ )
217226 calculate_power_output (weather , example_farm , example_cluster )
218227 plot_or_print (example_farm , example_cluster )
219228
0 commit comments