77__copyright__ = "Copyright oemof developer group"
88__license__ = "GPLv3"
99
10- from windpowerlib import modelchain , tools , wind_farm , power_curve , \
10+ from windpowerlib import modelchain , tools , wind_farm , power_curves , \
1111 wind_turbine_cluster
1212import pandas as pd
1313
@@ -33,11 +33,11 @@ class TurbineClusterModelChain(object):
3333 Default: True.
3434 block_width : Float, optional
3535 Width of the moving block.
36- Default in :py:func:`~.power_curve .smooth_power_curve`: 0.5.
36+ Default in :py:func:`~.power_curves .smooth_power_curve`: 0.5.
3737 standard_deviation_method : String, optional
3838 Method for calculating the standard deviation for the gaussian
3939 distribution. Options: 'turbulence_intensity', 'Norgaard', 'Staffell'.
40- Default in :py:func:`~.power_curve .smooth_power_curve`:
40+ Default in :py:func:`~.power_curves .smooth_power_curve`:
4141 'turbulence_intensity'.
4242 density_correction_order : String
4343 Defines when the density correction takes place if `density_correction`
@@ -67,11 +67,11 @@ class TurbineClusterModelChain(object):
6767 Default: True.
6868 block_width : Float, optional
6969 Width of the moving block.
70- Default in :py:func:`~.power_curve .smooth_power_curve`: 0.5.
70+ Default in :py:func:`~.power_curves .smooth_power_curve`: 0.5.
7171 standard_deviation_method : String, optional
7272 Method for calculating the standard deviation for the gaussian
7373 distribution. Options: 'turbulence_intensity', 'Norgaard', 'Staffell'.
74- Default in :py:func:`~.power_curve .smooth_power_curve`:
74+ Default in :py:func:`~.power_curves .smooth_power_curve`:
7575 'turbulence_intensity'.
7676 power_output : pandas.Series
7777 Electrical power output of the wind turbine in W.
@@ -178,7 +178,7 @@ def wind_farm_power_curve(self, wind_farm, **kwargs):
178178 pass # TODO: add density correction
179179 if (self .smoothing and
180180 self .smoothing_order == 'turbine_power_curves' ):
181- power_curve = power_curve .smooth_power_curve (
181+ power_curve = power_curves .smooth_power_curve (
182182 power_curve ['wind_speed' ], power_curve ['power' ], ** kwargs )
183183 # Add power curves of all turbines of same type to data frame after
184184 # renaming columns
@@ -204,13 +204,13 @@ def wind_farm_power_curve(self, wind_farm, **kwargs):
204204 pass # TODO: add density correction
205205 if (self .smoothing and
206206 self .smoothing_order == 'wind_farm_power_curves' ):
207- summarized_power_curve_df = power_curve .smooth_power_curve (
207+ summarized_power_curve_df = power_curves .smooth_power_curve (
208208 summarized_power_curve_df ['wind_speed' ],
209209 summarized_power_curve_df ['power' ], ** kwargs )
210210 if (self .wake_losses_method == 'constant_efficiency' or
211211 self .wake_losses_method == 'wind_efficiency_curve' ):
212212 summarized_power_curve_df = (
213- power_curve .wake_losses_to_power_curve (
213+ power_curves .wake_losses_to_power_curve (
214214 summarized_power_curve_df ['wind_speed' ].values ,
215215 summarized_power_curve_df ['power' ].values ,
216216 wake_losses_method = self .wake_losses_method ,
@@ -260,7 +260,7 @@ def turbine_cluster_power_curve(self, **kwargs):
260260 # function run_model()
261261 if (self .smoothing and
262262 self .smoothing_order == 'cluster_power_curve' ):
263- summarized_power_curve_df = power_curve .smooth_power_curve (
263+ summarized_power_curve_df = power_curves .smooth_power_curve (
264264 summarized_power_curve_df ['wind_speed' ],
265265 summarized_power_curve_df ['power' ], ** kwargs )
266266 return summarized_power_curve_df
0 commit comments