|
4 | 4 |
|
5 | 5 | """ |
6 | 6 |
|
| 7 | +import numpy as np |
| 8 | + |
| 9 | + |
7 | 10 | __copyright__ = "Copyright oemof developer group" |
8 | 11 | __license__ = "GPLv3" |
9 | 12 |
|
@@ -54,3 +57,64 @@ def smallest_difference(value_1, value_2, comp_value, corresp_1, corresp_2): |
54 | 57 | else: |
55 | 58 | corresp_value = corresp_2 |
56 | 59 | return (closest_value, corresp_value) |
| 60 | + |
| 61 | + |
| 62 | +def linear_extra_interpolation(data_frame, requested_height, column_name): |
| 63 | + r""" |
| 64 | + Inter- or extrapolates between the values of a data frame. |
| 65 | +
|
| 66 | + This function can for example be used for the interpolation of a wind |
| 67 | + speed, density or temperature. |
| 68 | +
|
| 69 | + Parameters |
| 70 | + ---------- |
| 71 | + data_frame : DataFrame |
| 72 | + Indices are the values between which will be interpolated or from which |
| 73 | + will be extrapolated, the corresponding values are in the column |
| 74 | + specified by `column_name` and they can be floats, pd.Series or |
| 75 | + np.arrays. |
| 76 | + requested_height : float |
| 77 | + Height for which the interpolation takes place (e.g. hub height of wind |
| 78 | + turbine). |
| 79 | + column_name : string |
| 80 | + Name of the column in the DataFrame `data_frame` that contains the |
| 81 | + correponding values. |
| 82 | +
|
| 83 | + Returns |
| 84 | + ------- |
| 85 | + interpolant : pandas.Series, numpy.array or float |
| 86 | + Result of the interpolation (e.g. density at hub height). |
| 87 | +
|
| 88 | + Notes |
| 89 | + ----- |
| 90 | +
|
| 91 | + For the interpolation np.interp() is used and the following equation is |
| 92 | + used for extrapolation: |
| 93 | +
|
| 94 | + .. math:: interpolant = (value_2 - value_1) / (height_2 - height_1) * |
| 95 | + (requested_height - height_1) + value_1 |
| 96 | +
|
| 97 | + with: |
| 98 | + height_2: largest/smallest value in data frame, height_1: second |
| 99 | + largest/smallest value in data frame, value_2: corresponding value to |
| 100 | + height_2, value_1: correponding value to height_1 |
| 101 | +
|
| 102 | + """ |
| 103 | + if requested_height > max(data_frame.index): |
| 104 | + height_2 = max(data_frame.index) |
| 105 | + value_2 = data_frame[column_name][height_2] |
| 106 | + height_1 = sorted(data_frame.index)[-2] # Second largest number |
| 107 | + value_1 = data_frame[column_name][height_1] |
| 108 | + interpolant = ((value_2 - value_1) / (height_2 - height_1) * |
| 109 | + (requested_height - height_1) + value_1) |
| 110 | + elif requested_height < min(data_frame.index): |
| 111 | + height_2 = min(data_frame.index) |
| 112 | + value_2 = data_frame[column_name][height_2] |
| 113 | + height_1 = sorted(data_frame.index)[1] # Second smallest number |
| 114 | + value_1 = data_frame[column_name][height_1] |
| 115 | + interpolant = ((value_2 - value_1) / (height_2 - height_1) * |
| 116 | + (requested_height - height_1) + value_1) |
| 117 | + else: |
| 118 | + interpolant = np.interp(requested_height, data_frame.index, |
| 119 | + data_frame[column_name]) |
| 120 | + return interpolant |
0 commit comments