You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -123,7 +123,7 @@ The [winkNLP](https://winkjs.org/wink-nlp/) processes raw text at **~650,000 tok
123
123
124
124
The benchmark was conducted on [Node.js versions 16, and 18](https://nodejs.org/en/about/releases/).
125
125
126
-
It pos tags a subset of WSJ corpus with an accuracy of **~94.7%** — this includes *tokenization of raw text prior to pos tagging*. The present state-of-the-art is at ~97% accuracy but at lower speeds and is generally computed using gold standard pre-tokenized corpus.
126
+
It pos tags a subset of WSJ corpus with an accuracy of **~95%** — this includes *tokenization of raw text prior to pos tagging*. The present state-of-the-art is at ~97% accuracy but at lower speeds and is generally computed using gold standard pre-tokenized corpus.
127
127
128
128
Its general purpose sentiment analysis delivers a [f-score](https://en.wikipedia.org/wiki/F1_score) of **~84.5%**, when validated using Amazon Product Review [Sentiment Labelled Sentences Data Set](https://archive.ics.uci.edu/ml/machine-learning-databases/00331/) at [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php). The current benchmark accuracy for **specifically trained** models can range around 95%.
0 commit comments