|
7 | 7 | "year": 2023, |
8 | 8 | "paper": "https://agustinus.kristia.de/files/dissertation_kristiadi.pdf" |
9 | 9 | }, |
| 10 | + |
10 | 11 | { |
11 | 12 | "type": "thesis", |
12 | 13 | "title": "Predictive Uncertainty Quantification With Compound Density Networks", |
|
15 | 16 | "year": 2019, |
16 | 17 | "paper": "https://agustinus.kristia.de/files/cdn_master_thesis.pdf" |
17 | 18 | }, |
| 19 | + |
18 | 20 | { |
19 | 21 | "type": "conference", |
20 | 22 | "title": "Parallel Particle Swarm Optimization for Image Segmentation", |
|
24 | 26 | "paper": "https://www.researchgate.net/publication/271843950_Parallel_Particle_Swarm_Optimization_for_Image_Segmentation", |
25 | 27 | "code": "https://github.com/wiseodd/cuda-pso" |
26 | 28 | }, |
| 29 | + |
27 | 30 | { |
28 | 31 | "type": "conference", |
29 | 32 | "title": "Parallel Particle Swarm Optimization for Image Segmentation", |
|
33 | 36 | "paper": "https://www.researchgate.net/publication/271843950_Parallel_Particle_Swarm_Optimization_for_Image_Segmentation", |
34 | 37 | "code": "https://github.com/wiseodd/cuda-pso" |
35 | 38 | }, |
| 39 | + |
36 | 40 | { |
37 | 41 | "type": "conference", |
38 | 42 | "title": "Improving Response Selection in Multi-turn Dialogue Systems", |
|
47 | 51 | "paper": "https://arxiv.org/abs/1809.03194", |
48 | 52 | "code": "https://github.com/SmartDataAnalytics/AK-DE-biGRU" |
49 | 53 | }, |
| 54 | + |
50 | 55 | { |
51 | 56 | "type": "conference", |
52 | 57 | "title": "Incorporating Literals into Knowledge Graph Embeddings", |
|
62 | 67 | "paper": "https://arxiv.org/abs/1802.00934", |
63 | 68 | "code": "https://github.com/SmartDataAnalytics/LiteralE" |
64 | 69 | }, |
| 70 | + |
65 | 71 | { |
66 | 72 | "type": "conference", |
67 | 73 | "title": "Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks", |
|
72 | 78 | "github": "https://github.com/wiseodd/last_layer_laplace", |
73 | 79 | "marked": true |
74 | 80 | }, |
| 81 | + |
75 | 82 | { |
76 | 83 | "type": "conference", |
77 | 84 | "title": "Learnable Uncertainty under Laplace Approximations", |
|
83 | 90 | "paper": "https://arxiv.org/abs/2010.02720", |
84 | 91 | "code": "https://github.com/wiseodd/lula" |
85 | 92 | }, |
| 93 | + |
86 | 94 | { |
87 | 95 | "type": "conference", |
88 | 96 | "title": "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence", |
|
94 | 102 | "paper": "https://arxiv.org/abs/2010.02709", |
95 | 103 | "marked": true |
96 | 104 | }, |
| 105 | + |
97 | 106 | { |
98 | 107 | "type": "conference", |
99 | 108 | "title": "Laplace Redux - Effortless Bayesian Deep Learning", |
|
110 | 119 | "paper": "https://arxiv.org/abs/2106.14806", |
111 | 120 | "code": "https://github.com/aleximmer/Laplace" |
112 | 121 | }, |
| 122 | + |
113 | 123 | { |
114 | 124 | "type": "conference", |
115 | 125 | "title": "Being a Bit Frequentist Improves Bayesian Neural Networks", |
|
119 | 129 | "paper": "https://arxiv.org/abs/2106.10065", |
120 | 130 | "code": "https://github.com/wiseodd/bayesian_ood_training" |
121 | 131 | }, |
| 132 | + |
122 | 133 | { |
123 | 134 | "type": "conference", |
124 | 135 | "title": "Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference", |
|
133 | 144 | "paper": "https://arxiv.org/abs/2203.03353", |
134 | 145 | "code": "https://github.com/tml-tuebingen/gibbs-prior-diagnostic" |
135 | 146 | }, |
| 147 | + |
136 | 148 | { |
137 | 149 | "type": "conference", |
138 | 150 | "title": "Fast Predictive Uncertainty for Classification with Bayesian Deep Networks", |
|
142 | 154 | "paper": "https://arxiv.org/abs/2003.01227", |
143 | 155 | "code": "https://github.com/mariushobbhahn/LB_for_BNNs_official" |
144 | 156 | }, |
| 157 | + |
145 | 158 | { |
146 | 159 | "type": "conference", |
147 | 160 | "title": "Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks", |
|
151 | 164 | "paper": "https://arxiv.org/abs/2205.10041", |
152 | 165 | "code": "https://github.com/runame/laplace-refinement" |
153 | 166 | }, |
| 167 | + |
154 | 168 | { |
155 | 169 | "type": "conference", |
156 | 170 | "title": "The Geometry of Neural Nets' Parameter Spaces Under Reparametrization", |
|
161 | 175 | "paper": "https://arxiv.org/abs/2302.07384", |
162 | 176 | "marked": true |
163 | 177 | }, |
| 178 | + |
164 | 179 | { |
165 | 180 | "type": "conference", |
166 | 181 | "title": "Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks", |
|
176 | 191 | "paper": "https://arxiv.org/abs/2311.03683", |
177 | 192 | "code": "https://github.com/serenahacker/PreLoad" |
178 | 193 | }, |
| 194 | + |
179 | 195 | { |
180 | 196 | "type": "conference", |
181 | 197 | "title": "Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC for Large Neural Nets", |
|
193 | 209 | "paper": "https://arxiv.org/abs/2312.05705", |
194 | 210 | "code": "https://github.com/f-dangel/singd" |
195 | 211 | }, |
| 212 | + |
196 | 213 | { |
197 | 214 | "type": "conference", |
198 | 215 | "title": "Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI", |
|
226 | 243 | "year": 2024, |
227 | 244 | "paper": "https://arxiv.org/abs/2402.00809" |
228 | 245 | }, |
| 246 | + |
229 | 247 | { |
230 | 248 | "type": "conference", |
231 | 249 | "title": "A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?", |
|
243 | 261 | "code": "https://github.com/wiseodd/lapeft-bayesopt", |
244 | 262 | "marked": true |
245 | 263 | }, |
| 264 | + |
246 | 265 | { |
247 | 266 | "type": "journal", |
248 | 267 | "title": "Deep Convolutional Level Set Method for Image Segmentation", |
|
252 | 271 | "paper": "https://journals.itb.ac.id/index.php/jictra/article/view/3887", |
253 | 272 | "code": "https://github.com/wiseodd/cnn-levelset" |
254 | 273 | }, |
| 274 | + |
255 | 275 | { |
256 | 276 | "type": "preprint", |
257 | 277 | "title": "On the Disconnect Between Theory and Practice of Overparametrized Neural Networks", |
|
260 | 280 | "year": 2023, |
261 | 281 | "paper": "https://arxiv.org/abs/2310.00137" |
262 | 282 | }, |
| 283 | + |
263 | 284 | { |
264 | 285 | "type": "workshop", |
265 | 286 | "title": "A Critical Look At Tokenwise Reward-Guided Text Generation", |
|
274 | 295 | "year": 2024, |
275 | 296 | "paper": "https://arxiv.org/abs/2406.07780" |
276 | 297 | }, |
| 298 | + |
277 | 299 | { |
278 | 300 | "type": "workshop", |
279 | 301 | "title": "Predictive Uncertainty Quantification with Compound Density Networks", |
|
283 | 305 | "paper": "https://arxiv.org/abs/1902.01080", |
284 | 306 | "code": "https://github.com/wiseodd/compound-density-networks" |
285 | 307 | }, |
| 308 | + |
286 | 309 | { |
287 | 310 | "type": "workshop", |
288 | 311 | "title": "Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning", |
|
296 | 319 | "year": 2021, |
297 | 320 | "paper": "https://arxiv.org/abs/2111.03577" |
298 | 321 | }, |
| 322 | + |
299 | 323 | { |
300 | 324 | "type": "workshop", |
301 | 325 | "title": "Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization", |
|
310 | 334 | "paper": "https://arxiv.org/abs/2304.08309", |
311 | 335 | "code": "https://github.com/wiseodd/laplace-bayesopt" |
312 | 336 | }, |
| 337 | + |
313 | 338 | { |
314 | 339 | "type": "workshop", |
315 | 340 | "title": "How Useful is Intermittent, Asynchronous Expert Feedback for Bayesian Optimization?", |
|
326 | 351 | "paper": "https://arxiv.org/abs/2406.06459", |
327 | 352 | "code": "https://github.com/wiseodd/bo-async-feedback" |
328 | 353 | }, |
| 354 | + |
329 | 355 | { |
330 | 356 | "type": "workshop", |
331 | 357 | "title": "Uncertainty-Guided Optimization on Large Language Model Search Trees", |
|
341 | 367 | "year": 2024, |
342 | 368 | "paper": "https://arxiv.org/abs/2407.03951", |
343 | 369 | "code": "https://github.com/JuliaGrosse/ults", |
344 | | - "marked": true |
| 370 | + "marked": false |
345 | 371 | }, |
| 372 | + |
346 | 373 | { |
347 | 374 | "type": "workshop", |
348 | 375 | "title": "If Optimizing for General Parameters in Chemistry Is Useful, Why Is It Hardly Done?", |
|
361 | 388 | "year": 2024, |
362 | 389 | "paper": "https://openreview.net/pdf?id=ZfL0poiEOe" |
363 | 390 | }, |
| 391 | + |
364 | 392 | { |
365 | 393 | "type": "workshop", |
366 | 394 | "title": "Dimension Deficit: Is 3D a Step Too Far for Optimizing Molecules?", |
|
375 | 403 | "venue": "AI4Mat - NeurIPS", |
376 | 404 | "year": 2024, |
377 | 405 | "paper": "https://openreview.net/pdf?id=PLazBHIN8g" |
| 406 | + }, |
| 407 | + |
| 408 | + { |
| 409 | + "type": "preprint", |
| 410 | + "title": "Efficient Weight-Space Laplace-Gaussian Filtering and Smoothing for Sequential Deep Learning", |
| 411 | + "author": [ |
| 412 | + "Joanna Sliwa", |
| 413 | + "Frank Schneider", |
| 414 | + "Nathanael Bosch", |
| 415 | + "Agustinus Kristiadi", |
| 416 | + "Philipp Hennig" |
| 417 | + ], |
| 418 | + "venue": "ArXiv", |
| 419 | + "year": 2024, |
| 420 | + "paper": "https://arxiv.org/abs/2410.06800" |
| 421 | + }, |
| 422 | + |
| 423 | + { |
| 424 | + "type": "workshop", |
| 425 | + "title": "What Actually Matters for Materials Discovery: Pitfalls and Recommendations in Bayesian Optimization", |
| 426 | + "author": [ |
| 427 | + "Tristan Cinquin", |
| 428 | + "Stanley Lo", |
| 429 | + "Felix Strieth-Kalthoff", |
| 430 | + "Alan Aspuru-Guzik", |
| 431 | + "Geoff Pleiss", |
| 432 | + "Robert Bamler", |
| 433 | + "Tim G. J. Rudner", |
| 434 | + "Vincent Fortuin", |
| 435 | + "Agustinus Kristiadi" |
| 436 | + ], |
| 437 | + "venue": "AI for Accelerated Materials Design–ICLR 2025", |
| 438 | + "year": 2025, |
| 439 | + "paper": "https://openreview.net/forum?id=GbV2JjfnSY" |
| 440 | + }, |
| 441 | + |
| 442 | + { |
| 443 | + "type": "preprint", |
| 444 | + "title": "Position: Curvature Matrices Should Be Democratized via Linear Operators", |
| 445 | + "author": [ |
| 446 | + "Felix Dangel", |
| 447 | + "Runa Eschenhagen", |
| 448 | + "Weronika Ormaniec", |
| 449 | + "Andres Fernandez", |
| 450 | + "Lukas Tatzel", |
| 451 | + "Agustinus Kristiadi" |
| 452 | + ], |
| 453 | + "venue": "ArXiv", |
| 454 | + "year": 2025, |
| 455 | + "paper": "https://arxiv.org/abs/2501.19183" |
| 456 | + }, |
| 457 | + |
| 458 | + { |
| 459 | + "type": "preprint", |
| 460 | + "title": "Simplifying Bayesian Optimization Via In-Context Direct Optimum Sampling", |
| 461 | + "author": [ |
| 462 | + "Gustavo Sutter", |
| 463 | + "Mohammed Abdulrahman", |
| 464 | + "Hao Wang", |
| 465 | + "Sriram Ganapathi Subramanian", |
| 466 | + "Marc St-Aubin", |
| 467 | + "Sharon O'Sullivan", |
| 468 | + "Lawrence Wan", |
| 469 | + "Luis Ricardez-Sandoval", |
| 470 | + "Pascal Poupart", |
| 471 | + "Agustinus Kristiadi" |
| 472 | + ], |
| 473 | + "venue": "ArXiv", |
| 474 | + "year": 2025, |
| 475 | + "paper": "https://arxiv.org/abs/2505.23913", |
| 476 | + "marked": true |
| 477 | + }, |
| 478 | + |
| 479 | + { |
| 480 | + "type": "preprint", |
| 481 | + "title": "FlashMD: Long-Stride, Universal Prediction of Molecular Dynamics", |
| 482 | + "author": [ |
| 483 | + "Filippo Bigi", |
| 484 | + "Sanggyu Chong", |
| 485 | + "Agustinus Kristiadi", |
| 486 | + "Michele Ceriotti" |
| 487 | + ], |
| 488 | + "venue": "ArXiv", |
| 489 | + "year": 2025, |
| 490 | + "paper": "https://arxiv.org/abs/2505.19350" |
| 491 | + }, |
| 492 | + |
| 493 | + { |
| 494 | + "type": "conference", |
| 495 | + "title": "Towards Cost-Effective Reward Guided Text Generation", |
| 496 | + "author": [ |
| 497 | + "Ahmad Rashid", |
| 498 | + "Ruotian Wu", |
| 499 | + "Rongqi Fan", |
| 500 | + "Hongliang Li", |
| 501 | + "Agustinus Kristiadi", |
| 502 | + "Pascal Poupart" |
| 503 | + ], |
| 504 | + "venue": "ICML", |
| 505 | + "year": 2025, |
| 506 | + "paper": "https://arxiv.org/abs/2502.04517" |
378 | 507 | } |
379 | 508 | ] |
0 commit comments