diff --git a/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst b/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst index 80b06ebff7..a93b4cbb18 100644 --- a/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst +++ b/source/docs/software/advanced-controls/state-space/state-space-pose-estimators.rst @@ -47,6 +47,8 @@ Add vision pose measurements occasionally by calling ``AddVisionMeasurement()``. :lines: 93-106 :lineno-match: +.. seealso:: For detailed information about obtaining vision measurements from AprilTags, see :doc:`/docs/software/vision-processing/apriltag/apriltag-pose-estimation`. + ## Tuning Pose Estimators All pose estimators offer user-customizable standard deviations for model and measurements (defaults are used if you don't provide them). Standard deviation is a measure of how spread out the noise is for a random signal. Giving a state a smaller standard deviation means it will be trusted more during data fusion. diff --git a/source/docs/software/vision-processing/apriltag/apriltag-pose-estimation.rst b/source/docs/software/vision-processing/apriltag/apriltag-pose-estimation.rst new file mode 100644 index 0000000000..1a7f3b72d6 --- /dev/null +++ b/source/docs/software/vision-processing/apriltag/apriltag-pose-estimation.rst @@ -0,0 +1,303 @@ +# Using AprilTags for Pose Estimation + +AprilTag detection is most commonly used to help your robot determine its position on the field. This article explains how to obtain vision measurements from AprilTags and use them with WPILib's pose estimators. + +## Overview + +The process of using AprilTags for pose estimation involves: + +1. **Detect AprilTags**: Use a vision solution to detect AprilTags on the field +2. **Get Tag Pose**: Look up the known field position of the detected tag from the ``AprilTagFieldLayout`` +3. **Calculate Robot Pose**: Use the camera-to-tag transform and camera-to-robot transform to calculate where the robot is on the field +4. **Apply Measurement**: Pass the calculated pose to your pose estimator using ``AddVisionMeasurement()`` + +## Using Vision Libraries + +Most teams use existing vision processing libraries that handle the complex mathematics for you: + +### PhotonVision + +PhotonVision provides the ``PhotonPoseEstimator`` class which simplifies the entire process: + +.. tab-set-code:: + + ```java + import org.photonvision.PhotonPoseEstimator; + import org.photonvision.PhotonPoseEstimator.PoseStrategy; + + // Create the pose estimator + PhotonPoseEstimator photonPoseEstimator = new PhotonPoseEstimator( + fieldLayout, // AprilTagFieldLayout + PoseStrategy.MULTI_TAG_PNP_ON_COPROCESSOR, + camera, // PhotonCamera + robotToCam // Transform3d from robot to camera + ); + + // In your periodic method + var result = photonPoseEstimator.update(); + if (result.isPresent()) { + var estimatedPose = result.get(); + poseEstimator.addVisionMeasurement( + estimatedPose.estimatedPose.toPose2d(), + estimatedPose.timestampSeconds + ); + } + ``` + + ```c++ + #include + + // Create the pose estimator + photon::PhotonPoseEstimator photonPoseEstimator{ + fieldLayout, // frc::AprilTagFieldLayout + photon::PoseStrategy::MULTI_TAG_PNP_ON_COPROCESSOR, + camera, // photon::PhotonCamera + robotToCam // frc::Transform3d from robot to camera + }; + + // In your periodic method + auto result = photonPoseEstimator.Update(); + if (result) { + poseEstimator.AddVisionMeasurement( + result->estimatedPose.ToPose2d(), + result->timestamp + ); + } + ``` + + ```python + from photonlibpy.photonPoseEstimator import PhotonPoseEstimator, PoseStrategy + + # Create the pose estimator + photon_pose_estimator = PhotonPoseEstimator( + field_layout, # AprilTagFieldLayout + PoseStrategy.MULTI_TAG_PNP_ON_COPROCESSOR, + camera, # PhotonCamera + robot_to_cam # Transform3d from robot to camera + ) + + # In your periodic method + result = photon_pose_estimator.update() + if result is not None: + pose_estimator.addVisionMeasurement( + result.estimatedPose.toPose2d(), + result.timestamp + ) + ``` + +See the `PhotonVision documentation `_ for complete details. + +### Limelight + +Limelight cameras with MegaTag provide robot poses directly through NetworkTables: + +.. tab-set-code:: + + ```java + import edu.wpi.first.networktables.NetworkTable; + import edu.wpi.first.networktables.NetworkTableInstance; + + NetworkTable limelightTable = NetworkTableInstance.getDefault().getTable("limelight"); + + // In your periodic method + double[] botpose = limelightTable.getEntry("botpose_wpiblue").getDoubleArray(new double[6]); + if (botpose.length > 0 && botpose[0] != 0.0) { + Pose2d visionPose = new Pose2d(botpose[0], botpose[1], Rotation2d.fromDegrees(botpose[5])); + double latency = limelightTable.getEntry("tl").getDouble(0) + limelightTable.getEntry("cl").getDouble(0); + double timestamp = Timer.getFPGATimestamp() - (latency / 1000.0); + + poseEstimator.addVisionMeasurement(visionPose, timestamp); + } + ``` + + ```c++ + #include + #include + + auto limelightTable = nt::NetworkTableInstance::GetDefault().GetTable("limelight"); + + // In your periodic method + auto botpose = limelightTable->GetEntry("botpose_wpiblue").GetDoubleArray({}); + if (!botpose.empty() && botpose[0] != 0.0) { + frc::Pose2d visionPose{units::meter_t{botpose[0]}, units::meter_t{botpose[1]}, + frc::Rotation2d{units::degree_t{botpose[5]}}}; + auto latency = limelightTable->GetEntry("tl").GetDouble(0) + limelightTable->GetEntry("cl").GetDouble(0); + auto timestamp = frc::Timer::GetFPGATimestamp() - units::millisecond_t{latency}; + + poseEstimator.AddVisionMeasurement(visionPose, timestamp); + } + ``` + + ```python + from ntcore import NetworkTableInstance + from wpilib import Timer + from wpimath.geometry import Pose2d, Rotation2d + + limelight_table = NetworkTableInstance.getDefault().getTable("limelight") + + # In your periodic method + botpose = limelight_table.getEntry("botpose_wpiblue").getDoubleArray([]) + if len(botpose) > 0 and botpose[0] != 0.0: + vision_pose = Pose2d(botpose[0], botpose[1], Rotation2d.fromDegrees(botpose[5])) + latency = limelight_table.getEntry("tl").getDouble(0) + limelight_table.getEntry("cl").getDouble(0) + timestamp = Timer.getFPGATimestamp() - (latency / 1000.0) + + pose_estimator.addVisionMeasurement(vision_pose, timestamp) + ``` + +.. note:: Use ``botpose_wpiblue`` or ``botpose_wpired`` based on your alliance color. These provide poses in the correct field coordinate system. + +See the `Limelight documentation `_ for the complete NetworkTables API. + +## Important Considerations + +### Timestamps + +It's critical to use the **timestamp from when the image was captured**, not when it was processed. Vision processing introduces latency (typically 20-100ms), and the pose estimator needs the actual capture time to properly fuse the measurement with odometry data. + +Most vision libraries provide this timestamp: +- PhotonVision: ``result.timestampSeconds`` +- Limelight: Calculate from ``tl`` (targeting latency) + ``cl`` (capture latency) + +### Standard Deviations + +The accuracy of vision measurements varies based on several factors: + +- **Distance from tags**: Measurements are less accurate when far from tags +- **Number of tags**: Seeing multiple tags improves accuracy +- **Tag ambiguity**: Low-resolution or angled views reduce accuracy +- **Camera quality**: Higher resolution cameras provide better accuracy + +You should scale the standard deviations passed to ``AddVisionMeasurement()`` based on these factors: + +.. tab-set-code:: + + ```java + // Example: Scale standard deviations based on distance and tag count + double distance = /* calculate distance to nearest tag */; + int tagCount = /* number of tags seen */; + + // More tags = more trust, greater distance = less trust + double xyStdDev = 0.5 * Math.pow(distance, 2) / tagCount; + double thetaStdDev = 999999.9; // Don't trust rotation from single tag + + poseEstimator.addVisionMeasurement( + visionPose, + timestamp, + VecBuilder.fill(xyStdDev, xyStdDev, thetaStdDev) + ); + ``` + + ```c++ + // Example: Scale standard deviations based on distance and tag count + double distance = /* calculate distance to nearest tag */; + int tagCount = /* number of tags seen */; + + // More tags = more trust, greater distance = less trust + double xyStdDev = 0.5 * std::pow(distance, 2) / tagCount; + double thetaStdDev = 999999.9; // Don't trust rotation from single tag + + poseEstimator.AddVisionMeasurement( + visionPose, + timestamp, + {xyStdDev, xyStdDev, thetaStdDev} + ); + ``` + + ```python + # Example: Scale standard deviations based on distance and tag count + distance = # calculate distance to nearest tag + tag_count = # number of tags seen + + # More tags = more trust, greater distance = less trust + xy_std_dev = 0.5 * (distance ** 2) / tag_count + theta_std_dev = 999999.9 # Don't trust rotation from single tag + + pose_estimator.addVisionMeasurement( + vision_pose, + timestamp, + (xy_std_dev, xy_std_dev, theta_std_dev) + ) + ``` + +See :doc:`/docs/software/advanced-controls/state-space/state-space-pose-estimators` for more information about tuning standard deviations. + +### Rejecting Bad Measurements + +You should reject vision measurements in certain situations: + +- **No tags detected**: Only use measurements when tags are visible +- **High ambiguity**: Reject measurements with low confidence (check tag ambiguity values) +- **Unrealistic poses**: Reject measurements that are outside the field boundaries or far from your current estimate +- **During rapid motion**: Vision measurements may be less reliable during fast turns or acceleration + +Example rejection logic: + +.. tab-set-code:: + + ```java + var result = photonPoseEstimator.update(); + if (result.isPresent()) { + var estimatedPose = result.get(); + + // Check if pose is reasonable (within field boundaries) + if (estimatedPose.estimatedPose.getX() >= 0 && + estimatedPose.estimatedPose.getX() <= fieldLayout.getFieldLength() && + estimatedPose.estimatedPose.getY() >= 0 && + estimatedPose.estimatedPose.getY() <= fieldLayout.getFieldWidth()) { + + poseEstimator.addVisionMeasurement( + estimatedPose.estimatedPose.toPose2d(), + estimatedPose.timestampSeconds + ); + } + } + ``` + + ```c++ + auto result = photonPoseEstimator.Update(); + if (result) { + // Check if pose is reasonable (within field boundaries) + if (result->estimatedPose.X() >= 0_m && + result->estimatedPose.X() <= fieldLayout.GetFieldLength() && + result->estimatedPose.Y() >= 0_m && + result->estimatedPose.Y() <= fieldLayout.GetFieldWidth()) { + + poseEstimator.AddVisionMeasurement( + result->estimatedPose.ToPose2d(), + result->timestamp + ); + } + } + ``` + + ```python + result = photon_pose_estimator.update() + if result is not None: + # Check if pose is reasonable (within field boundaries) + if (0 <= result.estimatedPose.X() <= field_layout.getFieldLength() and + 0 <= result.estimatedPose.Y() <= field_layout.getFieldWidth()): + + pose_estimator.addVisionMeasurement( + result.estimatedPose.toPose2d(), + result.timestamp + ) + ``` + +## Custom Vision Solutions + +If you're implementing your own vision processing, you'll need to: + +1. **Detect tags and get camera-to-tag transforms**: Use a library like OpenCV's ``solvePnP`` to calculate the transformation from your camera to each detected tag +2. **Transform to robot pose**: Apply your camera-to-robot transform (determined by camera mounting position) +3. **Transform to field pose**: Use the tag's known field position from ``AprilTagFieldLayout`` to calculate the robot's field position +4. **Handle latency**: Capture and use the image timestamp, accounting for processing delay + +This approach requires solid understanding of 3D geometry and coordinate transformations. Most teams are better served using existing vision libraries that handle these details. + +## See Also + +- :doc:`/docs/software/advanced-controls/state-space/state-space-pose-estimators` - Using pose estimators with vision measurements +- :doc:`/docs/software/basic-programming/coordinate-system` - Understanding the FRC coordinate system +- `PhotonVision Documentation `__ - Complete PhotonVision documentation +- `Limelight Documentation `__ - Complete Limelight documentation diff --git a/source/docs/software/vision-processing/apriltag/index.rst b/source/docs/software/vision-processing/apriltag/index.rst index 06f7e9506b..3902634a67 100644 --- a/source/docs/software/vision-processing/apriltag/index.rst +++ b/source/docs/software/vision-processing/apriltag/index.rst @@ -4,3 +4,4 @@ :maxdepth: 2 apriltag-intro + apriltag-pose-estimation