|
12 | 12 | | SOTA Transformer-based Topic Models | :compass: [S³](https://x-tabdeveloping.github.io/turftopic/s3/), :key: [KeyNMF](https://x-tabdeveloping.github.io/turftopic/KeyNMF/), :gem: [GMM](https://x-tabdeveloping.github.io/turftopic/GMM/), [Clustering Models (BERTopic and Top2Vec)](https://x-tabdeveloping.github.io/turftopic/GMM/), [Autoencoding models (ZeroShotTM and CombinedTM)](https://x-tabdeveloping.github.io/turftopic/ctm/), [FASTopic](https://x-tabdeveloping.github.io/turftopic/FASTopic/) | |
13 | 13 | | Models for all Scenarios | :chart_with_upwards_trend: [Dynamic](https://x-tabdeveloping.github.io/turftopic/dynamic/), :ocean: [Online](https://x-tabdeveloping.github.io/turftopic/online/), :herb: [Seeded](https://x-tabdeveloping.github.io/turftopic/seeded/), :evergreen_tree: [Hierarchical](https://x-tabdeveloping.github.io/turftopic/hierarchical/), and :camera: [Multimodal](https://x-tabdeveloping.github.io/turftopic/multimodal/) topic modeling | |
14 | 14 | | [Easy Interpretation](https://x-tabdeveloping.github.io/turftopic/model_interpretation/) | :bookmark_tabs: Pretty Printing, :bar_chart: Interactive Figures, :art: [topicwizard](https://github.com/x-tabdeveloping/topicwizard) compatible | |
15 | | -| [Topic Naming](https://x-tabdeveloping.github.io/turftopic/namers/) | :robot: LLM-based, N-gram Retrieval, :wave: Manual | |
| 15 | +| [Topic Analysis](https://x-tabdeveloping.github.io/turftopic/analyzers/) | :robot: LLM-generated names and descriptions, :wave: Manual Topic Naming | |
16 | 16 | | [Informative Topic Descriptions](https://x-tabdeveloping.github.io/turftopic/vectorizers/) | :key: Keyphrases, Noun-phrases, Lemmatization, Stemming | |
17 | 17 |
|
18 | 18 |
|
@@ -140,11 +140,11 @@ Turftopic now allows you to automatically assign human readable names to topics |
140 | 140 |
|
141 | 141 | ```python |
142 | 142 | from turftopic import KeyNMF |
143 | | -from turftopic.namers import OpenAITopicNamer |
| 143 | +from turftopic.analyzers import OpenAIAnalyzer |
144 | 144 |
|
145 | 145 | model = KeyNMF(10).fit(corpus) |
146 | 146 |
|
147 | | -namer = OpenAITopicNamer("gpt-4o-mini") |
| 147 | +namer = OpenAIAnalyzer("gpt-4o-mini") |
148 | 148 | model.rename_topics(namer) |
149 | 149 | model.print_topics() |
150 | 150 | ``` |
@@ -193,20 +193,19 @@ pip install "turftopic[datamapplot, openai]" |
193 | 193 |
|
194 | 194 | ```python |
195 | 195 | from turftopic import ClusteringTopicModel |
196 | | -from turftopic.namers import OpenAITopicNamer |
| 196 | +from turftopic.analyzers import OpenAIAnalyzer |
197 | 197 |
|
198 | 198 | model = ClusteringTopicModel(feature_importance="centroid").fit(corpus) |
199 | 199 |
|
200 | | -namer = OpenAITopicNamer("gpt-4o-mini") |
| 200 | +namer = OpenAIAnalyzer("gpt-5-nano") |
201 | 201 | model.rename_topics(namer) |
202 | 202 |
|
203 | 203 | fig = model.plot_clusters_datamapplot() |
204 | 204 | fig.show() |
205 | 205 | ``` |
206 | 206 |
|
207 | | -<center> |
208 | | - <img src="https://github.com/x-tabdeveloping/turftopic/blob/main/docs/images/cluster_datamapplot.png?raw=true" width="70%" style="margin-left: auto;margin-right: auto;"> |
209 | | -</center> |
| 207 | +<img width="1915" height="2002" alt="image" src="https://github.com/user-attachments/assets/56253aaf-4066-4074-b61a-0d55b8dede73" /> |
| 208 | + |
210 | 209 |
|
211 | 210 | In addition, Turftopic is natively supported in [topicwizard](https://github.com/x-tabdeveloping/topicwizard), an interactive topic model visualization library, is compatible with all models from Turftopic. |
212 | 211 |
|
|
0 commit comments