You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| Models for all Scenarios |:chart_with_upwards_trend:[Dynamic](https://x-tabdeveloping.github.io/turftopic/dynamic/), :ocean:[Online](https://x-tabdeveloping.github.io/turftopic/online/), :herb:[Seeded](https://x-tabdeveloping.github.io/turftopic/seeded/), and :evergreen_tree:[Hierarchical](https://x-tabdeveloping.github.io/turftopic/hierarchical/) topic modeling |
10
+
| SOTA Transformer-based Topic Models |:compass:[S³](https://x-tabdeveloping.github.io/turftopic/s3/), :key:[KeyNMF](https://x-tabdeveloping.github.io/turftopic/KeyNMF/), :gem:[GMM](https://x-tabdeveloping.github.io/turftopic/GMM/), [Clustering Models (BERTopic and Top2Vec)](https://x-tabdeveloping.github.io/turftopic/GMM/), [Autoencoding models (ZeroShotTM and CombinedTM)](https://x-tabdeveloping.github.io/turftopic/ctm/), [FASTopic](https://x-tabdeveloping.github.io/turftopic/FASTopic/)|
11
+
| Models for all Scenarios |:chart_with_upwards_trend:[Dynamic](https://x-tabdeveloping.github.io/turftopic/dynamic/), :ocean:[Online](https://x-tabdeveloping.github.io/turftopic/online/), :herb:[Seeded](https://x-tabdeveloping.github.io/turftopic/seeded/), :evergreen_tree:[Hierarchical](https://x-tabdeveloping.github.io/turftopic/hierarchical/), and :camera:[Multimodal](https://x-tabdeveloping.github.io/turftopic/multimodal/) topic modeling |
[](https://colab.research.google.com/github/x-tabdeveloping/turftopic/blob/main/examples/basic_example_20newsgroups.ipynb)
19
19
20
+
For detailed model comparison and tutorials, consult our documentation: [Click here](https://x-tabdeveloping.github.io/turftopic/)
21
+
20
22
### Installation
21
23
22
24
Turftopic can be installed from PyPI.
@@ -31,6 +33,12 @@ If you intend to use CTMs, make sure to install the package with Pyro as an opti
31
33
pip install turftopic[pyro-ppl]
32
34
```
33
35
36
+
If you want to use clustering models like BERTopic or Top2Vec, install:
37
+
38
+
```bash
39
+
pip install turftopic[umap-learn]
40
+
```
41
+
34
42
### Fitting a Model
35
43
36
44
Turftopic's models follow the scikit-learn API conventions, and as such they are quite easy to use if you are familiar with
@@ -140,10 +148,10 @@ model.print_topics()
140
148
You can use a set of custom vectorizers for topic modeling over **phrases**, as well as **lemmata** and **stems**.
141
149
142
150
```python
143
-
from turftopic importKeyNMF
151
+
from turftopic importBERTopic
144
152
from turftopic.vectorizers.spacy import NounPhraseCountVectorizer
0 commit comments