|
7 | 7 | % Full summary: pmGenerator --transform data/w2.txt -f -n -t . -j 1 |
8 | 8 | % Step counting: pmGenerator --transform data/w2.txt -f -n -t . -p -2 -d |
9 | 9 | % pmGenerator --transform data/w2.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -p -2 -d |
10 | | -% Compact (3083 bytes): pmGenerator --transform data/w2.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CpCCNqCCNrsCNqCCNCCNtCCNuvNpCutwNCxCCyCxzCCNzCCNabyCazCrq,CCCNpqrCCNCpsCCNtuCrCCvCCwCvxCCNxCCNyzwCyxsCtCps,CpCqCrCsCtq,CpCqCrCNps,CCCNpqrCCNCpsCCNtuNrCtCps,CpCCNqCCNrsCNqCCNCtCCuCtvCCNvCCNwxuCwvyNzCzCrq,CpCqCrp,CpCqCrCsCtp,CpCNCqCNprs,CpCCNqCCNCCNrCCNstNCNpuCsrvNCwwq,CCNCpCqrrCpCqr,CNCpCqNrCsCtCur,CNNpCqCrCsp,CCNpCCNNqrqCNqp,CCNCCpqqCCNrspCrCCpqq,CNCpCqrCsNr,CCNCpCqrCCNstCNrCCNquCprCsCpCqr,CCpqCpCrq,CCNCCNCpqCpqqCCNrspCrCCNCpqCpqq,CCNCCpqqpCCpqq,CCNppCCpqq,CCCpqrCqr,CCpCqCprCqCpr,CCCpqCrpCrp,CCpCqCrNpCqCrNp,CCNpCqCrpCqCrp,CCpCNCpqrCNCpqr,CCpCNNpqCNNpq,CCNNCpqpp,CpCCpqCrq,CpCqCCprCsr,CCNpCCpqqCCpqq,CCpNqCpCqr,CNCCpqCprq,CCpqCpCCqrr,CCNCpqrCCrqCpq |
11 | | -% Concrete (1855466 bytes): pmGenerator --transform data/w2.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
| 10 | +% Compact (1620 bytes): pmGenerator --transform data/w2.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CpCCNqCCNrsCNqCCNCCNtCCNuvNpCutwNCxCCyCxzCCNzCCNabyCazCrq,CCCNpqrCCNCpsCCNtuCrCCvCCwCvxCCNxCCNyzwCyxsCtCps,CCpCCqCrCsCtquCCNuCCNvwpCvu,CpCCNqCCNrsCNqCCNCtCCuCtvCCNvCCNwxuCwvyNzCzCrq,CpCCNqCCNCrCNpstNCuCCvCuwCCNwCCNxyvCxwq,CpCCNqCCNrsCpqCrq,CCpCCqCCNrCCNCsCNqtuNCvCwCCxCwyCCNyCCNzaxCzyrbCCNbCCNcdpCcb,CNCpCqNrCsCtCur,CCNCCpqCrqCCNstCNqCCNrupCsCCpqCrq,CCNCCpqqpCCpqq,CCpCqCprCqCpr,CCpqCCNppq,CCpCqrCCqpCqr,CCpCqrCpCqCsr |
| 11 | +% Concrete (40960 bytes): pmGenerator --transform data/w2.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
12 | 12 |
|
13 | 13 | CpCCqCprCCNrCCNstqCsr = 1 |
14 | 14 | [0] CCpCCqCCrCqsCCNsCCNturCtsvCCNvCCNwxpCwv = D11 |
15 | 15 | [1] CCNCCNCCNpCCNqrsCqpCCNtuvCtCCNpCCNqrsCqpCCNwxCsCvpCwCCNCCNpCCNqrsCqpCCNtuvCtCCNpCCNqrsCqp = D[0]1 |
16 | 16 | [2] CCNCpqCCNrsCCCNtCCNuvNpCutCCwCCxCwyCCNyCCNzaxCzyqCrCpq = D[0][0] |
17 | 17 | [3] CCNCCNCpqCCNrsCtCCuCCvCuwCCNwCCNxyvCxwqCrCpqCCNzaCNqCCNpbtCzCCNCpqCCNrsCtCCuCCvCuwCCNwCCNxyvCxwqCrCpq = DD1[0]1 |
18 | 18 | [4] CpCCNCCNqCCNrsCNqCCNtuNpCrqCCNvwtCvCCNqCCNrsCNqCCNtuNpCrq = D[1]1 |
19 | | -[5] CpCCNqCCNrsCNqCCNCCNtCCNuvNpCutwNCxCCyCxzCCNzCCNabyCazCrq = DD[4]11 |
20 | | -[6] CCpCCqCCNrCCNstCNrCCNCCNuCCNvwNqCvuxNCyCCzCyaCCNaCCNbczCbaCsrdCCNdCCNefpCed = D1[5] |
21 | | -[7] CCNCpqCCNrsCCtpCCuCCvCuwCCNwCCNxyvCxwqCrCpq = D[6][0] |
22 | | -[8] CCpqCCNCCNqCCNrstCrqCCNuvpCuCCNqCCNrstCrq = D[1][5] |
23 | | -[9] CCCpCCqCprCCNrCCNstqCsruCvu = D[2][5] |
24 | | -[10] CCCNpqrCCNCpsCCNtuCrCCvCCwCvxCCNxCCNyzwCyxsCtCps = D[3][5] |
25 | | -[11] CCNpCCNqrCCsCCtCsuCCNuCCNvwtCvupCqp = D[0][9] |
26 | | -[12] CCNCpCqrCCNstCCNquCNrCCNCvCCwCvxCCNxCCNyzwCyxaNpCsCpCqr = D[0][10] |
27 | | -[13] CCNCCNCpCqrCCNstCCNquvCsCpCqrCCNwxCNCqrCCNpyCvCCzCCaCzbCCNbCCNcdaCcbrCwCCNCpCqrCCNstCCNquvCsCpCqr = DD1[10]1 |
28 | | -[14] CCNCCNpCCNqrsCqpCCNtuCCNCvCCwCvxCCNxCCNyzwCyxaNsCtCCNpCCNqrsCqp = DD1D[7]11 |
| 19 | +[5] CCNCCNpCCNqrCNpCCNstNCuCCvCuwCCNwCCNxyvCxwCqpCCNzasCzCCNpCCNqrCNpCCNstNCuCCvCuwCCNwCCNxyvCxwCqp = D[4]1 |
| 20 | +[6] CpCCNqCCNrsCNqCCNCCNtCCNuvNpCutwNCxCCyCxzCCNzCCNabyCazCrq = D[5]1 |
| 21 | +[7] CCpCCqCCNrCCNstCNrCCNCCNuCCNvwNqCvuxNCyCCzCyaCCNaCCNbczCbaCsrdCCNdCCNefpCed = D1[6] |
| 22 | +[8] CCNCpqCCNrsCCtpCCuCCvCuwCCNwCCNxyvCxwqCrCpq = D[7][0] |
| 23 | +[9] CCpqCCNCCNqCCNrstCrqCCNuvpCuCCNqCCNrstCrq = D[1][6] |
| 24 | +[10] CCCNpqrCCNCpsCCNtuCrCCvCCwCvxCCNxCCNyzwCyxsCtCps = D[3][6] |
| 25 | +[11] CCNCpCqrCCNstCCNquCNrCCNCvCCwCvxCCNxCCNyzwCyxaNpCsCpCqr = D[0][10] |
| 26 | +[12] CCNCCNpCCNqrsCqpCCNtuCCNCvCCwCvxCCNxCCNyzwCyxaNsCtCCNpCCNqrsCqp = DD1D[8]11 |
29 | 27 |
|
30 | 28 | % Identity principle (Cpp), i.e. 0→0 ; 35 steps |
31 | | -[15] Cpp = D[11][5] |
| 29 | +[13] Cpp = DD[0]D[2][6][6] |
32 | 30 |
|
33 | | -[16] CCNpCCNCqCCrCqsCCNsCCNturCtsvNwCwCxp = D[12][5] |
34 | | -[17] CCCNpqCrCCsCCtCsuCCNuCCNvwtCvuxCCNCpCyxCCNzaCCNybrCzCpCyx = D[13][5] |
35 | | -[18] CNpCCNqCCNrspCrq = D[14][5] |
36 | | -[19] CCpCCqqrCCNrCCNstpCsr = D1[15] |
37 | | -[20] CCNCCNpCCNqrCspCqpCCNtusCtCCNpCCNqrCspCqp = D[19]1 |
38 | | -[21] CpCqCCCNqrsCts = DD[17]11 |
39 | | -[22] CCNCCNpCCNqrCspCqpCCNtuCNCCNpCCNqrCspCqpCCNCvCCwCvxCCNxCCNyzwCyxasCtCCNpCCNqrCspCqp = D[0][20] |
40 | | -[23] CpCqCrCsCtq = DDDDD1DD[0][3][5]1[5]11 |
41 | | -[24] CCpCCqCrCsCtquCCNuCCNvwpCvu = D1D[23]1 |
42 | | -[25] CpCqCrCNps = D[2][21] |
43 | | -[26] CCNCpCNqrCCNstqCsCpCNqr = D[0][25] |
44 | | -[27] CCCNpqrCCNCpsCCNtuNrCtCps = DDD1[18]1[5] |
45 | | -[28] CpCCNqCCNrsCNqCCNCtCCuCtvCCNvCCNwxuCwvyNzCzCrq = D[7]DD[0]DDD1DDD1[3]111[5]1 |
| 31 | +[14] CCNpCCNCqCCrCqsCCNsCCNturCtsvNwCwCxp = D[11][6] |
| 32 | +[15] CCCNpqCrCCsCCtCsuCCNuCCNvwtCvuxCCNCpCyxCCNzaCCNybrCzCpCyx = DDD1[10]1[6] |
| 33 | +[16] CNpCCNqCCNrspCrq = D[12][6] |
| 34 | +[17] CCpCCqqrCCNrCCNstpCsr = D1[13] |
| 35 | +[18] CCNCCNpCCNqrCspCqpCCNtusCtCCNpCCNqrCspCqp = D[17]1 |
| 36 | +[19] CpCqCrCsCtq = DDDDD1DD[0][3][6]1[6]11 |
| 37 | +[20] CCpCCqCrCsCtquCCNuCCNvwpCvu = D1D[19]1 |
| 38 | +[21] CCNCpCNqrCCNstqCsCpCNqr = D[0]D[2]DD[15]11 |
| 39 | +[22] CCCNpqrCCNCpsCCNtuNrCtCps = DDD1[16]1[6] |
| 40 | +[23] CpCCNqCCNrsCNqCCNCtCCuCtvCCNvCCNwxuCwvyNzCzCrq = D[8]DD[0]DDD1DDD1[3]111[6]1 |
46 | 41 |
|
47 | 42 | % Axiom 1 by Frege (CpCqp), i.e. 0→(1→0) ; 53 steps |
48 | | -[29] CpCqp = DD[24][0]1 |
| 43 | +[24] CpCqp = DD[20][0]1 |
49 | 44 |
|
50 | | -[30] CCpCCqCrqsCCNsCCNtupCts = D1[29] |
51 | | -[31] CCCNCpCCqCprCCNrCCNstqCsruvCCNwCCNxyCvwCxw = D[22][5] |
52 | | -[32] CCNCpqCCNrsCCtCupCCvCCwCvxCCNxCCNyzwCyxqCrCpq = D[10][16] |
| 45 | +[25] CCNCpqCCNrsCCtCupCCvCCwCvxCCNxCCNyzwCyxqCrCpq = D[10][14] |
53 | 46 |
|
54 | 47 | % Axiom 3 by Łukasiewicz (CpCNpq), i.e. 0→(¬0→1) ; 57 steps |
55 | | -[33] CpCNpq = D[32]1 |
| 48 | +[26] CpCNpq = D[25]1 |
56 | 49 |
|
57 | | -[34] CCpCCqCrCNsCCNtCCNuvsCutwCCNwCCNxypCxw = D1DD[0]DD[8][14][5]1 |
58 | | -[35] CCpCCqCCrCqsCCNsCCNturCtsvCpCwCxv = DD[6][17][5] |
59 | | -[36] CpCqCNCrps = D[26][5] |
60 | | -[37] CCNCNCpqrCCNstqCsCNCpqr = D[0][36] |
61 | | -[38] CpCqCrp = DD[0][12][23] |
62 | | -[39] CCNpCCNqrNsCsCqp = DD[0][31][5] |
63 | | -[40] CpCqCrCsCtp = DD[0]DDD1DDD1D[21]1111[5][5] |
64 | | -[41] CpCNCqCNprs = D[11]DD[6]DDD1[25]111 |
65 | | -[42] CpCCNqCCNrsCpqCrq = D[22][28] |
66 | | -[43] CCNCNpqCCNrspCrCNpq = D[0]DDD1[38][0]D[12]1 |
67 | | -[44] CpCCNqCCNCCNrCCNstNCNpuCsrvNCwwq = D[32]DD[0][4]DD[0]DDD1DDD1[9]111[5]1 |
68 | | -[45] CCpCCqCCNrCCNCCNsCCNtuNCNqvCtswNCxxryCCNyCCNzapCzy = D1[44] |
69 | | -[46] CCNCpCqrrCpCqr = DD[0]DDD[6]DD[0][13][5][5]DD[0]DD[0]D[8]1[5][5][5] |
70 | | -[47] CNCpCqNrCsCtCur = DD[34]DDD1[24]1[5][5] |
71 | | -[48] CNNpCqCrCsp = DD[34]DDD1[30]1[5][5] |
72 | | -[49] CCNpCCNNqrqCNqp = DDDD1[41]1[29]1 |
73 | | -[50] CCNCCpqqCCNrspCrCCpqq = D[45][42] |
74 | | -[51] CNCpCqrCsNr = DD[43][47]1 |
75 | | -[52] CpCCpqq = D[50][44] |
76 | | -[53] CCNCpCqrCCNstCNrCCNquCprCsCpCqr = D[45]DDD1[42]1[44] |
77 | | -[54] CCpqCpCrq = D[53][28] |
| 50 | +[27] CpCCNqCCNCrCNpstNCuCCvCuwCCNwCCNxyvCxwq = D[25]DDD[0][7][6][5] |
| 51 | +[28] CpCCNqCCNrsCpqCrq = DD[0][18][23] |
| 52 | +[29] CCpCCqCCNrCCNCsCNqtuNCvCwCCxCwyCCNyCCNzaxCzyrbCCNbCCNcdpCcb = D1D[25]DD[0]DD[7]DDD1[4]1[6]11 |
| 53 | +[30] CNCpCqNrCsCtCur = DDD1DD[0]DD[9][12][6]1DDD1[20]1[6][6] |
| 54 | +[31] CCNCCpqqCCNrspCrCCpqq = D[29][28] |
| 55 | +[32] CCNCpCqrCCNstCNrCCNquCprCsCpCqr = D[29]DDD1[28]1[27] |
78 | 56 |
|
79 | | -% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 405 steps |
80 | | -[55] CCNppp = DDD[20][51]1[44] |
| 57 | +% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 367 steps |
| 58 | +[33] CCNppp = DDD[18]DDD[0]D[2]DDD1[19]DDD1[11]111[30]11[27] |
81 | 59 |
|
82 | | -[56] CCNCCNCpqCpqqCCNrspCrCCNCpqCpqq = D[45]DDD1[55]1[44] |
83 | | -[57] CpCCNCpqCpqq = D[56][44] |
84 | | -[58] CCpqCrCpCsq = D[54][54] |
85 | | -[59] CpCCNCNqqCNqqq = D[56]DDD[0]DD[0][26][5][47]1 |
86 | | -[60] CpCCNCNqCrqCNqCrqCrq = D[56][51] |
87 | | -[61] CCNpNqCCNpCCNrsqCrp = DDD1DDD1[57][15]11[44] |
88 | | -[62] CCNCCpqqpCCpqq = D[50][57] |
89 | | -[63] CCNppCCpqq = D[50][59] |
90 | | -[64] CCCpqrCqr = DDD[45][19][44]DDDDDD1DDD1[6]1[5]1[5]1[5][57] |
91 | | -[65] CpCCNqqCCqrr = D[29][63] |
92 | | -[66] CCpCqCprCqCpr = D[62]DD[37]DD[0]DDD1[27]1[5][5]1 |
| 60 | +[34] CCNCCNCpqCpqqCCNrspCrCCNCpqCpqq = D[29]DDD1[33]1[27] |
| 61 | +[35] CCNCCpqCrqCCNstCNqCCNrupCsCCpqCrq = D[29]DDD1DDD1D[31][27]1[27]1[27] |
| 62 | +[36] CCCNpqrCCrsCps = D[35][6] |
| 63 | +[37] CpCCNCpqCpqq = D[34][27] |
| 64 | +[38] CCNpCCNqrsCCspCqp = D[35][27] |
| 65 | +[39] CCNCCpqqpCCpqq = D[31][37] |
93 | 66 |
|
94 | | -% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 1153 steps |
95 | | -[67] CCNpNqCqp = DD[45][61][44] |
| 67 | +% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 1007 steps |
| 68 | +[40] CCNpNqCqp = DD[29]DDD1DDD1[37][13]11[27][27] |
96 | 69 |
|
97 | | -[68] CCCpqCrpCrp = D[62]DDD1DD[0][8][5]D[27][16][28] |
98 | | -[69] CCpCqCrNpCqCrNp = D[62]D[49][40] |
99 | | -[70] CCNpCqCrpCqCrp = D[62]D[49]D[35][48] |
100 | | -[71] CCpCqNpCqNp = D[69][52] |
101 | | -[72] CCpCNCpqrCNCpqr = D[62]D[68][41] |
102 | | -[73] CCCCpqqCprCpr = D[66]D[50][65] |
103 | | -[74] CCpCNNpqCNNpq = DDD[0][29][60]D[50]DDD[0][38][60]D[50]DDDD[0]DD[8]D[0][18][5][38]1DDD1[36][31][5] |
104 | | -[75] CCNNCpqpp = D[68]D[50]D[39]D[56]D[29]DD[0]DD[0]D[30][18][28][59] |
105 | | -[76] CpCCpqCrq = D[73][58] |
106 | | -[77] CpCqCCprCsr = D[54][76] |
107 | | -[78] CCNpCCpqqCCpqq = D[62]D[71]D[37][65] |
108 | | -[79] CNCpqCCNCprCprr = D[56]D[29][75] |
109 | | -[80] CCpqCpCNqr = D[26][79] |
110 | | -[81] CNNpCCpqCrq = D[74][77] |
111 | | -[82] CCpqCNCprq = D[66]D[72][77] |
112 | | -[83] CCpNqCpCqr = D[70]D[82]D[39][79] |
113 | | -[84] CNCCpqCprq = DD[78]DDD[0][40][79]DD[43][57]D[69]D[80]DD[53][5][75]D[80][83] |
114 | | -[85] CNCCpqCprCsq = D[54][84] |
115 | | -[86] CNCCpqCprCsCtq = D[35][85] |
116 | | -[87] CCpqCpCCqrr = D[46]DD[64][50]D[78]D[74][86] |
117 | | -[88] CCNCpqrCCrqCpq = D[70]DDDDD[53][44][57][76]DDD[66][81]D[46]D[87]D[67]DD[64]D[0]DDD1[48][0]1DD[66]DD[66][63][77]DD[66]D[73][77][83]DDD[69]D[49][85]D[69]D[49][86]D[49]D[54]DD[66]D[50]D[29]D[71]DDD[6][61][44]D[49]D[54][52]D[72]D[54][82][77] |
118 | | -[89] CCpCqrCCqpCqr = D[88][84] |
119 | | -[90] CCpCqrCpCqCsr = D[89][58] |
| 70 | +[41] CCpCqCprCqCpr = D[39]DDD[0]D[21][6]DD[0]DDD1[22]1[6][6]1 |
| 71 | +[42] CCpqCCNppq = D[38]D[34]DDD[0]DD[0][21][6][30]1 |
| 72 | +[43] CCpCqrCCqpCqr = D[38]D[34]D[24]DD[39]DDD1DD[0][9][6]D[22][14][23]D[31]D[24]DDD[29][17][27]D[39]DD[8]DDD[0][15][6]D[20][16]1 |
| 73 | +[44] CCpCqrCpCqCsr = D[43]DD[0]DD[9]D[32][27][6][6] |
120 | 74 |
|
121 | | -% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 588991 steps |
122 | | -[91] CCpqCCqrCpr = D[66]D[90]DD[88]D[72][58][89] |
| 75 | +% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 11703 steps |
| 76 | +[45] CCpqCCqrCpr = D[41]D[44]DD[36]D[42]D[32][23][43] |
123 | 77 |
|
124 | | -% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 1264633 steps |
125 | | -[92] CCpCqrCCpqCpr = DD[91]D[66]D[90]DD[66]DDD[62]D[71]DD[62]DD[27][29][44]D[26][28]D[87][81][77][89][89] |
| 78 | +% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 27599 steps |
| 79 | +[46] CCpCqrCCpqCpr = DD[45]D[41]D[44]DD[36]D[42]D[35][23][43][43] |
0 commit comments