|
| 1 | +from itertools import zip_longest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | + |
| 6 | +# vendored from xarray.core.formatting |
| 7 | +# https://github.com/pydata/xarray/blob/v0.16.0/xarray/core/formatting.py#L18-216 |
| 8 | +def pretty_print(x, numchars: int): |
| 9 | + """Given an object `x`, call `str(x)` and format the returned string so |
| 10 | + that it is numchars long, padding with trailing spaces or truncating with |
| 11 | + ellipses as necessary |
| 12 | + """ |
| 13 | + s = maybe_truncate(x, numchars) |
| 14 | + return s + " " * max(numchars - len(s), 0) |
| 15 | + |
| 16 | + |
| 17 | +# vendored from xarray.core.formatting |
| 18 | +def maybe_truncate(obj, maxlen=500): |
| 19 | + s = str(obj) |
| 20 | + if len(s) > maxlen: |
| 21 | + s = s[: (maxlen - 3)] + "..." |
| 22 | + return s |
| 23 | + |
| 24 | + |
| 25 | +# vendored from xarray.core.formatting |
| 26 | +def wrap_indent(text, start="", length=None): |
| 27 | + if length is None: |
| 28 | + length = len(start) |
| 29 | + indent = "\n" + " " * length |
| 30 | + return start + indent.join(x for x in text.splitlines()) |
| 31 | + |
| 32 | + |
| 33 | +# vendored from xarray.core.formatting |
| 34 | +def _get_indexer_at_least_n_items(shape, n_desired, from_end): |
| 35 | + assert 0 < n_desired <= np.prod(shape) |
| 36 | + cum_items = np.cumprod(shape[::-1]) |
| 37 | + n_steps = np.argmax(cum_items >= n_desired) |
| 38 | + stop = int(np.ceil(float(n_desired) / np.r_[1, cum_items][n_steps])) |
| 39 | + indexer = ( |
| 40 | + ((-1 if from_end else 0),) * (len(shape) - 1 - n_steps) |
| 41 | + + ((slice(-stop, None) if from_end else slice(stop)),) |
| 42 | + + (slice(None),) * n_steps |
| 43 | + ) |
| 44 | + return indexer |
| 45 | + |
| 46 | + |
| 47 | +# vendored from xarray.core.formatting |
| 48 | +def first_n_items(array, n_desired): |
| 49 | + """Returns the first n_desired items of an array""" |
| 50 | + # Unfortunately, we can't just do array.flat[:n_desired] here because it |
| 51 | + # might not be a numpy.ndarray. Moreover, access to elements of the array |
| 52 | + # could be very expensive (e.g. if it's only available over DAP), so go out |
| 53 | + # of our way to get them in a single call to __getitem__ using only slices. |
| 54 | + if n_desired < 1: |
| 55 | + raise ValueError("must request at least one item") |
| 56 | + |
| 57 | + if array.size == 0: |
| 58 | + # work around for https://github.com/numpy/numpy/issues/5195 |
| 59 | + return [] |
| 60 | + |
| 61 | + if n_desired < array.size: |
| 62 | + indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=False) |
| 63 | + array = array[indexer] |
| 64 | + return np.asarray(array).flat[:n_desired] |
| 65 | + |
| 66 | + |
| 67 | +# vendored from xarray.core.formatting |
| 68 | +def last_n_items(array, n_desired): |
| 69 | + """Returns the last n_desired items of an array""" |
| 70 | + # Unfortunately, we can't just do array.flat[-n_desired:] here because it |
| 71 | + # might not be a numpy.ndarray. Moreover, access to elements of the array |
| 72 | + # could be very expensive (e.g. if it's only available over DAP), so go out |
| 73 | + # of our way to get them in a single call to __getitem__ using only slices. |
| 74 | + if (n_desired == 0) or (array.size == 0): |
| 75 | + return [] |
| 76 | + |
| 77 | + if n_desired < array.size: |
| 78 | + indexer = _get_indexer_at_least_n_items(array.shape, n_desired, from_end=True) |
| 79 | + array = array[indexer] |
| 80 | + return np.asarray(array).flat[-n_desired:] |
| 81 | + |
| 82 | + |
| 83 | +# vendored from xarray.core.formatting |
| 84 | +def last_item(array): |
| 85 | + """Returns the last item of an array in a list or an empty list.""" |
| 86 | + if array.size == 0: |
| 87 | + # work around for https://github.com/numpy/numpy/issues/5195 |
| 88 | + return [] |
| 89 | + |
| 90 | + indexer = (slice(-1, None),) * array.ndim |
| 91 | + return np.ravel(np.asarray(array[indexer])).tolist() |
| 92 | + |
| 93 | + |
| 94 | +# based on xarray.core.formatting.format_item |
| 95 | +def format_item(x, quote_strings=True): |
| 96 | + """Returns a succinct summary of an object as a string""" |
| 97 | + if isinstance(x, (str, bytes)): |
| 98 | + return repr(x) if quote_strings else x |
| 99 | + elif isinstance(x, (float, np.float_)): |
| 100 | + return f"{x:.4}" |
| 101 | + else: |
| 102 | + return str(x) |
| 103 | + |
| 104 | + |
| 105 | +# based on xarray.core.formatting.format_item |
| 106 | +def format_items(x): |
| 107 | + """Returns a succinct summaries of all items in a sequence as strings""" |
| 108 | + x = np.asarray(x) |
| 109 | + formatted = [format_item(xi) for xi in x] |
| 110 | + return formatted |
| 111 | + |
| 112 | + |
| 113 | +# vendored from xarray.core.formatting |
| 114 | +def format_array_flat(array, max_width: int): |
| 115 | + """Return a formatted string for as many items in the flattened version of |
| 116 | + array that will fit within max_width characters. |
| 117 | + """ |
| 118 | + # every item will take up at least two characters, but we always want to |
| 119 | + # print at least first and last items |
| 120 | + max_possibly_relevant = min( |
| 121 | + max(array.size, 1), max(int(np.ceil(max_width / 2.0)), 2) |
| 122 | + ) |
| 123 | + relevant_front_items = format_items( |
| 124 | + first_n_items(array, (max_possibly_relevant + 1) // 2) |
| 125 | + ) |
| 126 | + relevant_back_items = format_items(last_n_items(array, max_possibly_relevant // 2)) |
| 127 | + # interleave relevant front and back items: |
| 128 | + # [a, b, c] and [y, z] -> [a, z, b, y, c] |
| 129 | + relevant_items = sum( |
| 130 | + zip_longest(relevant_front_items, reversed(relevant_back_items)), () |
| 131 | + )[:max_possibly_relevant] |
| 132 | + |
| 133 | + cum_len = np.cumsum([len(s) + 1 for s in relevant_items]) - 1 |
| 134 | + if (array.size > 2) and ( |
| 135 | + (max_possibly_relevant < array.size) or (cum_len > max_width).any() |
| 136 | + ): |
| 137 | + padding = " ... " |
| 138 | + count = min( |
| 139 | + array.size, max(np.argmax(cum_len + len(padding) - 1 > max_width), 2) |
| 140 | + ) |
| 141 | + else: |
| 142 | + count = array.size |
| 143 | + padding = "" if (count <= 1) else " " |
| 144 | + |
| 145 | + num_front = (count + 1) // 2 |
| 146 | + num_back = count - num_front |
| 147 | + # note that num_back is 0 <--> array.size is 0 or 1 |
| 148 | + # <--> relevant_back_items is [] |
| 149 | + pprint_str = "".join( |
| 150 | + [ |
| 151 | + " ".join(relevant_front_items[:num_front]), |
| 152 | + padding, |
| 153 | + " ".join(relevant_back_items[-num_back:]), |
| 154 | + ] |
| 155 | + ) |
| 156 | + |
| 157 | + # As a final check, if it's still too long even with the limit in values, |
| 158 | + # replace the end with an ellipsis |
| 159 | + # NB: this will still returns a full 3-character ellipsis when max_width < 3 |
| 160 | + if len(pprint_str) > max_width: |
| 161 | + pprint_str = pprint_str[: max(max_width - 3, 0)] + "..." |
| 162 | + |
| 163 | + return pprint_str |
| 164 | + |
| 165 | + |
| 166 | +def inline_repr(quantity, max_width): |
| 167 | + magnitude = quantity.magnitude |
| 168 | + units = quantity.units |
| 169 | + |
| 170 | + units_repr = f"{units:~P}" |
| 171 | + if isinstance(magnitude, np.ndarray): |
| 172 | + data_repr = format_array_flat(magnitude, max_width - len(units_repr) - 3) |
| 173 | + else: |
| 174 | + data_repr = maybe_truncate(repr(magnitude), max_width - len(units_repr) - 3) |
| 175 | + |
| 176 | + return f"[{units_repr}] {data_repr}" |
0 commit comments