|
| 1 | +import asyncio |
| 2 | +import os |
| 3 | +import shutil |
| 4 | +from unittest.mock import MagicMock, patch |
| 5 | + |
| 6 | +from src.knowledge import knowledge_base |
| 7 | +from src.utils import logger |
| 8 | + |
| 9 | +# Mock Embedding Model |
| 10 | +class MockEmbeddingModel: |
| 11 | + async def abatch_encode(self, texts, batch_size=None): |
| 12 | + # Return dummy vectors of dim 4 |
| 13 | + return [[0.1, 0.2, 0.3, 0.4] for _ in texts] |
| 14 | + |
| 15 | + def batch_encode(self, texts, batch_size=None): |
| 16 | + return [[0.1, 0.2, 0.3, 0.4] for _ in texts] |
| 17 | + |
| 18 | +# Test function |
| 19 | +async def test_milvus_filter(): |
| 20 | + logger.info("Starting Milvus Filter Test") |
| 21 | + |
| 22 | + # Check if Milvus is available (pymilvus installed and connection works) |
| 23 | + try: |
| 24 | + from pymilvus import connections, utility |
| 25 | + # Assuming Milvus is running at default location |
| 26 | + connections.connect(alias="default", uri=os.getenv("MILVUS_URI", "http://localhost:19530")) |
| 27 | + logger.info("Connected to Milvus") |
| 28 | + except Exception as e: |
| 29 | + logger.warning(f"Milvus not available or connection failed: {e}") |
| 30 | + # Proceeding might fail, but let's try. |
| 31 | + |
| 32 | + db_id = "test_milvus_filter_db" |
| 33 | + file1 = "test_file_A.txt" |
| 34 | + file2 = "test_file_B.txt" |
| 35 | + |
| 36 | + # Patch embedding model |
| 37 | + with patch("src.models.embed.select_embedding_model", return_value=MockEmbeddingModel()): |
| 38 | + |
| 39 | + try: |
| 40 | + # Cleanup if exists |
| 41 | + if db_id in knowledge_base.global_databases_meta: |
| 42 | + await knowledge_base.delete_database(db_id) |
| 43 | + |
| 44 | + # Create DB |
| 45 | + logger.info("Creating database...") |
| 46 | + # explicitly set dimension to 4 to match mock |
| 47 | + await knowledge_base.create_database( |
| 48 | + database_name="Test Milvus Filter", |
| 49 | + description="Test DB", |
| 50 | + kb_type="milvus", |
| 51 | + embed_info={"name": "mock-embedding", "dimension": 4, "model_id": "mock"} |
| 52 | + ) |
| 53 | + |
| 54 | + # Get actual db_id |
| 55 | + target_db = next((db for db in knowledge_base.get_databases()["databases"] if db["name"] == "Test Milvus Filter"), None) |
| 56 | + if not target_db: |
| 57 | + logger.error("Failed to create DB") |
| 58 | + return |
| 59 | + |
| 60 | + db_id = target_db["db_id"] |
| 61 | + logger.info(f"DB created with ID: {db_id}") |
| 62 | + |
| 63 | + # Create dummy files |
| 64 | + |
| 65 | + with open(file1, "w") as f: |
| 66 | + f.write("Apple content.") |
| 67 | + with open(file2, "w") as f: |
| 68 | + f.write("Banana content.") |
| 69 | + |
| 70 | + # Add content |
| 71 | + logger.info("Adding content...") |
| 72 | + await knowledge_base.add_content(db_id, [os.path.abspath(file1), os.path.abspath(file2)]) |
| 73 | + |
| 74 | + # Wait for data to be visible |
| 75 | + logger.info("Waiting for data to be visible...") |
| 76 | + await asyncio.sleep(2) |
| 77 | + |
| 78 | + # Query without filter |
| 79 | + logger.info("Querying without filter...") |
| 80 | + results = await knowledge_base.aquery("content", db_id) |
| 81 | + logger.info(f"No filter results: {len(results)}") |
| 82 | + |
| 83 | + # Verify we have chunks from both files |
| 84 | + sources = [r['metadata']['source'] for r in results] |
| 85 | + logger.info(f"Sources: {sources}") |
| 86 | + |
| 87 | + # Query with filter A (Partial Match) |
| 88 | + logger.info("Querying with filter A (file_A)...") |
| 89 | + results_a = await knowledge_base.aquery("content", db_id, file_name="file_A") |
| 90 | + logger.info(f"Filter A results: {len(results_a)}") |
| 91 | + |
| 92 | + if len(results_a) == 0: |
| 93 | + logger.error("FAIL: Filter A returned 0 results") |
| 94 | + |
| 95 | + for r in results_a: |
| 96 | + source = r['metadata']['source'] |
| 97 | + logger.info(f" - {source}") |
| 98 | + if "test_file_A.txt" not in source: |
| 99 | + logger.error(f"FAIL: Expected test_file_A.txt, got {source}") |
| 100 | + raise AssertionError("Filter A failed") |
| 101 | + |
| 102 | + # Query with wildcard filter |
| 103 | + logger.info("Querying with wildcard filter (%B.txt)...") |
| 104 | + results_b = await knowledge_base.aquery("content", db_id, file_name="%B.txt") |
| 105 | + logger.info(f"Filter B results: {len(results_b)}") |
| 106 | + if len(results_b) == 0: |
| 107 | + logger.error("FAIL: Wildcard filter returned 0 results") |
| 108 | + |
| 109 | + for r in results_b: |
| 110 | + source = r['metadata']['source'] |
| 111 | + logger.info(f" - {source}") |
| 112 | + if "test_file_B.txt" not in source: |
| 113 | + logger.error(f"FAIL: Expected test_file_B.txt, got {source}") |
| 114 | + raise AssertionError("Filter B failed") |
| 115 | + |
| 116 | + if len(results_a) > 0 and len(results_b) > 0: |
| 117 | + logger.info("Test passed!") |
| 118 | + else: |
| 119 | + logger.error("Test failed: No results found for one or more queries") |
| 120 | + |
| 121 | + except Exception as e: |
| 122 | + logger.error(f"Test failed with exception: {e}") |
| 123 | + raise |
| 124 | + finally: |
| 125 | + # Cleanup |
| 126 | + logger.info("Cleaning up...") |
| 127 | + try: |
| 128 | + await knowledge_base.delete_database(db_id) |
| 129 | + except Exception: |
| 130 | + pass |
| 131 | + if os.path.exists(file1): |
| 132 | + os.remove(file1) |
| 133 | + if os.path.exists(file2): |
| 134 | + os.remove(file2) |
| 135 | + |
| 136 | +if __name__ == "__main__": |
| 137 | + asyncio.run(test_milvus_filter()) |
0 commit comments