|
| 1 | +# Copyright 2025 The IREE Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +# See https://llvm.org/LICENSE.txt for license information. |
| 5 | +# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | + |
| 7 | +from iree.turbine.kernel._support.indexing import sym |
| 8 | +from iree.turbine.kernel._support.dtype import f16, f32 |
| 9 | +from iree.turbine.kernel.lang.wave_types import * |
| 10 | +from iree.turbine.kernel.lang.global_symbols import * |
| 11 | +from iree.turbine.kernel.wave.utils.run_utils import set_default_run_config |
| 12 | +import iree.turbine.kernel as tkl |
| 13 | +import iree.turbine.kernel.wave as tkw |
| 14 | +from iree.turbine.kernel.wave.compile import WaveCompileOptions, wave_compile |
| 15 | +from .common.utils import require_e2e |
| 16 | +import torch |
| 17 | + |
| 18 | +# Define symbolic dimensions for our matrices |
| 19 | +M = sym.M # Rows of A and C |
| 20 | +N = sym.N # Rows of B and columns of C |
| 21 | +K = sym.K # Columns of A and B |
| 22 | + |
| 23 | +# Define workgroup tile sizes |
| 24 | +BLOCK_M = sym.BLOCK_M |
| 25 | +BLOCK_N = sym.BLOCK_N |
| 26 | +BLOCK_K = sym.BLOCK_K |
| 27 | + |
| 28 | +# Define the address space for our memory |
| 29 | +ADDRESS_SPACE_A = sym.ADDRESS_SPACE_A |
| 30 | +ADDRESS_SPACE_B = sym.ADDRESS_SPACE_B |
| 31 | +ADDRESS_SPACE_C = sym.ADDRESS_SPACE_C |
| 32 | + |
| 33 | +# Define constraints for the kernel |
| 34 | +constraints = [ |
| 35 | + tkw.WorkgroupConstraint(M, BLOCK_M, 0), |
| 36 | + tkw.WorkgroupConstraint(N, BLOCK_N, 1), |
| 37 | + tkw.TilingConstraint(K, BLOCK_K), |
| 38 | + tkw.WaveConstraint(M, BLOCK_M / 2), |
| 39 | + tkw.WaveConstraint(N, BLOCK_N / 2), |
| 40 | + tkw.HardwareConstraint( |
| 41 | + threads_per_wave=64, |
| 42 | + waves_per_block=(2, 2, 1), |
| 43 | + mma_type=tkw.MMAType.F32_16x16x16_F16, |
| 44 | + ), |
| 45 | +] |
| 46 | + |
| 47 | + |
| 48 | +@tkw.wave(constraints) |
| 49 | +def gemm( |
| 50 | + a: Memory[M, K, ADDRESS_SPACE_A, f16], # Input matrix A |
| 51 | + b: Memory[N, K, ADDRESS_SPACE_B, f16], # Input matrix B |
| 52 | + c: Memory[M, N, ADDRESS_SPACE_C, f32], # Output matrix C |
| 53 | +): |
| 54 | + # Initialize the accumulator register with zeros |
| 55 | + c_reg = Register[M, N, f32](0.0) |
| 56 | + |
| 57 | + # Iterate over the K dimension to compute the dot product |
| 58 | + @tkw.iterate(K, init_args=[c_reg]) |
| 59 | + def repeat(acc: Register[M, N, f32]) -> Register[M, N, f32]: |
| 60 | + # Load elements from A and B |
| 61 | + a_reg = tkw.read(a) |
| 62 | + b_reg = tkw.read(b) |
| 63 | + |
| 64 | + # Compute matrix multiplication and accumulate |
| 65 | + acc = tkw.mma(a_reg, b_reg, acc) |
| 66 | + return acc |
| 67 | + |
| 68 | + # Store the final result to C |
| 69 | + tkw.write(repeat, c) |
| 70 | + |
| 71 | + |
| 72 | +@require_e2e |
| 73 | +def test_gemm(): |
| 74 | + # Create test matrices |
| 75 | + m, n, k = 128, 256, 128 # Small dimensions for testing |
| 76 | + |
| 77 | + # Initialize input matrices with random values |
| 78 | + torch.manual_seed(0) |
| 79 | + a = torch.randn(m, k, dtype=torch.float16, device="cuda") |
| 80 | + b = torch.randn(n, k, dtype=torch.float16, device="cuda") |
| 81 | + c = torch.zeros(m, n, dtype=torch.float32, device="cuda") |
| 82 | + |
| 83 | + # Set hyperparameters for compilation |
| 84 | + hyperparams = { |
| 85 | + ADDRESS_SPACE_A: SHARED_ADDRESS_SPACE, |
| 86 | + ADDRESS_SPACE_B: SHARED_ADDRESS_SPACE, |
| 87 | + ADDRESS_SPACE_C: GLOBAL_ADDRESS_SPACE, |
| 88 | + BLOCK_M: 64, |
| 89 | + BLOCK_N: 64, |
| 90 | + BLOCK_K: 32, |
| 91 | + M: m, |
| 92 | + N: n, |
| 93 | + K: k, |
| 94 | + } |
| 95 | + |
| 96 | + # Compile the kernel |
| 97 | + options = WaveCompileOptions(subs=hyperparams, canonicalize=True) |
| 98 | + options = set_default_run_config(options) |
| 99 | + compiled_gemm = wave_compile(options, gemm) |
| 100 | + |
| 101 | + # Run the GEMM kernel |
| 102 | + compiled_gemm(a, b, c) |
| 103 | + |
| 104 | + # Verify the result using PyTorch's matmul |
| 105 | + expected = torch.matmul(a, b.t()) |
| 106 | + |
| 107 | + # Check if results are close (accounting for floating-point precision) |
| 108 | + assert torch.allclose( |
| 109 | + c.to(torch.float16), expected, rtol=1e-2, atol=1e-2 |
| 110 | + ), f"GEMM result doesn't match expected output\nMax difference: {(c - expected).abs().max()}" |
| 111 | + |
| 112 | + print("GEMM test passed!") |
0 commit comments