Skip to content

Commit 91d2fbc

Browse files
committed
Using the right name: s/gemm/sgemv/
1 parent 98e3b51 commit 91d2fbc

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

src/nnet.c

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,7 @@ static void vec_sigmoid(float *y, const float *x, int N)
133133
}
134134
}
135135

136-
static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
136+
static void sgemv_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
137137
{
138138
int i, j;
139139
for (i=0;i<rows;i+=16)
@@ -159,7 +159,7 @@ static void gemm_accum16(float *out, const float *weights, int rows, int cols, i
159159
_mm256_storeu_ps (&y[8], vy8);
160160
}
161161
}
162-
static void sparse_gemm_accum16(float *out, const float *weights, int rows, const int *idx, const float *x)
162+
static void sparse_sgemv_accum16(float *out, const float *weights, int rows, const int *idx, const float *x)
163163
{
164164
int i, j;
165165
for (i=0;i<rows;i+=16)
@@ -277,7 +277,7 @@ static void vec_sigmoid(float *y, const float *x, int N)
277277
}
278278
}
279279

280-
static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
280+
static void sgemv_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
281281
{
282282
int i, j;
283283
for (i=0;i<rows;i+=16)
@@ -310,7 +310,7 @@ static void gemm_accum16(float *out, const float *weights, int rows, int cols, i
310310
}
311311
}
312312

313-
static void sparse_gemm_accum16(float *out, const float *w, int rows, const int *idx, const float *x)
313+
static void sparse_sgemv_accum16(float *out, const float *w, int rows, const int *idx, const float *x)
314314
{
315315
int i, j;
316316
for (i=0;i<rows;i+=16)
@@ -353,12 +353,12 @@ static OPUS_INLINE float relu(float x)
353353
}
354354

355355

356-
static void gemm_accum(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
356+
static void sgemv_accum(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
357357
{
358358
int i, j;
359359
if (rows % 16 == 0)
360360
{
361-
gemm_accum16(out, weights, rows, cols, col_stride, x);
361+
sgemv_accum16(out, weights, rows, cols, col_stride, x);
362362
} else {
363363
for (i=0;i<rows;i++)
364364
{
@@ -410,7 +410,7 @@ void compute_dense(const DenseLayer *layer, float *output, const float *input)
410410
celt_assert(input != output);
411411
for (i=0;i<N;i++)
412412
output[i] = layer->bias[i];
413-
gemm_accum(output, layer->input_weights, N, M, stride, input);
413+
sgemv_accum(output, layer->input_weights, N, M, stride, input);
414414
compute_activation(output, output, N, layer->activation);
415415
}
416416

@@ -428,7 +428,7 @@ void compute_mdense(const MDenseLayer *layer, float *output, const float *input)
428428
stride = N*C;
429429
for (i=0;i<N*C;i++)
430430
tmp[i] = layer->bias[i];
431-
gemm_accum(tmp, layer->input_weights, N*C, M, stride, input);
431+
sgemv_accum(tmp, layer->input_weights, N*C, M, stride, input);
432432
compute_activation(tmp, tmp, N*C, ACTIVATION_TANH);
433433
for (i=0;i<N;i++)
434434
output[i] = 0;
@@ -462,8 +462,8 @@ void compute_gru(const GRULayer *gru, float *state, const float *input)
462462
for (i=0;i<N;i++)
463463
z[i] += gru->bias[3*N + i];
464464
}
465-
gemm_accum(z, gru->input_weights, N, M, stride, input);
466-
gemm_accum(z, gru->recurrent_weights, N, N, stride, state);
465+
sgemv_accum(z, gru->input_weights, N, M, stride, input);
466+
sgemv_accum(z, gru->recurrent_weights, N, N, stride, state);
467467
compute_activation(z, z, N, ACTIVATION_SIGMOID);
468468

469469
/* Compute reset gate. */
@@ -474,8 +474,8 @@ void compute_gru(const GRULayer *gru, float *state, const float *input)
474474
for (i=0;i<N;i++)
475475
r[i] += gru->bias[4*N + i];
476476
}
477-
gemm_accum(r, &gru->input_weights[N], N, M, stride, input);
478-
gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
477+
sgemv_accum(r, &gru->input_weights[N], N, M, stride, input);
478+
sgemv_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
479479
compute_activation(r, r, N, ACTIVATION_SIGMOID);
480480

481481
/* Compute output. */
@@ -485,15 +485,15 @@ void compute_gru(const GRULayer *gru, float *state, const float *input)
485485
{
486486
for (i=0;i<N;i++)
487487
tmp[i] = gru->bias[5*N + i];
488-
gemm_accum(tmp, &gru->recurrent_weights[2*N], N, N, stride, state);
488+
sgemv_accum(tmp, &gru->recurrent_weights[2*N], N, N, stride, state);
489489
for (i=0;i<N;i++)
490490
h[i] += tmp[i] * r[i];
491-
gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
491+
sgemv_accum(h, &gru->input_weights[2*N], N, M, stride, input);
492492
} else {
493493
for (i=0;i<N;i++)
494494
tmp[i] = state[i] * r[i];
495-
gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
496-
gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
495+
sgemv_accum(h, &gru->input_weights[2*N], N, M, stride, input);
496+
sgemv_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
497497
}
498498
compute_activation(h, h, N, gru->activation);
499499
for (i=0;i<N;i++)
@@ -524,10 +524,10 @@ void compute_gru2(const GRULayer *gru, float *state, const float *input)
524524
/* Compute update gate. */
525525
for (i=0;i<3*N;i++)
526526
zrh[i] = gru->bias[i];
527-
gemm_accum(zrh, gru->input_weights, 3*N, M, stride, input);
527+
sgemv_accum(zrh, gru->input_weights, 3*N, M, stride, input);
528528
for (i=0;i<3*N;i++)
529529
recur[i] = gru->bias[3*N + i];
530-
gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
530+
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
531531
for (i=0;i<2*N;i++)
532532
zrh[i] += recur[i];
533533
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
@@ -561,7 +561,7 @@ void compute_gru3(const GRULayer *gru, float *state, const float *input)
561561
RNN_COPY(zrh, input, 3*N);
562562
for (i=0;i<3*N;i++)
563563
recur[i] = gru->bias[3*N + i];
564-
gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
564+
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
565565
for (i=0;i<2*N;i++)
566566
zrh[i] += recur[i];
567567
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
@@ -598,7 +598,7 @@ void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *in
598598
for (i=0;i<N;i++)
599599
recur[k*N + i] += gru->diag_weights[k*N + i]*state[i];
600600
}
601-
sparse_gemm_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
601+
sparse_sgemv_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
602602
for (i=0;i<2*N;i++)
603603
zrh[i] += recur[i];
604604
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
@@ -626,7 +626,7 @@ void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const f
626626
stride = N;
627627
for (i=0;i<N;i++)
628628
output[i] = layer->bias[i];
629-
gemm_accum(output, layer->input_weights, N, M, stride, tmp);
629+
sgemv_accum(output, layer->input_weights, N, M, stride, tmp);
630630
compute_activation(output, output, N, layer->activation);
631631
RNN_COPY(mem, &tmp[layer->nb_inputs], layer->nb_inputs*(layer->kernel_size-1));
632632
}

0 commit comments

Comments
 (0)