|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import argparse |
| 4 | + |
| 5 | +import torch |
| 6 | +from torch import nn |
| 7 | + |
| 8 | + |
| 9 | +sys.path.append(os.path.join(os.path.split(__file__)[0], '../weight-exchange')) |
| 10 | +import wexchange.torch |
| 11 | + |
| 12 | +import rnnoise |
| 13 | +#from models import model_dict |
| 14 | + |
| 15 | +unquantized = [ 'conv1', 'dense_out', 'vad_dense' ] |
| 16 | + |
| 17 | +description=f""" |
| 18 | +This is an unsafe dumping script for RNNoise models. It assumes that all weights are included in Linear, Conv1d or GRU layer |
| 19 | +and will fail to export any other weights. |
| 20 | +
|
| 21 | +Furthermore, the quanitze option relies on the following explicit list of layers to be excluded: |
| 22 | +{unquantized}. |
| 23 | +
|
| 24 | +Modify this script manually if adjustments are needed. |
| 25 | +""" |
| 26 | + |
| 27 | +parser = argparse.ArgumentParser(description=description) |
| 28 | +parser.add_argument('weightfile', type=str, help='weight file path') |
| 29 | +parser.add_argument('export_folder', type=str) |
| 30 | +parser.add_argument('--export-filename', type=str, default='rnnoise_data', help='filename for source and header file (.c and .h will be added), defaults to rnnoise_data') |
| 31 | +parser.add_argument('--struct-name', type=str, default='RNNoise', help='name for C struct, defaults to RNNoise') |
| 32 | +parser.add_argument('--quantize', action='store_true', help='apply quantization') |
| 33 | + |
| 34 | +if __name__ == "__main__": |
| 35 | + args = parser.parse_args() |
| 36 | + |
| 37 | + print(f"loading weights from {args.weightfile}...") |
| 38 | + saved_gen= torch.load(args.weightfile, map_location='cpu') |
| 39 | + saved_gen['model_args'] = () |
| 40 | + #saved_gen['model_kwargs'] = {'cond_size': 256, 'gamma': 0.9} |
| 41 | + |
| 42 | + model = rnnoise.RNNoise(*saved_gen['model_args'], **saved_gen['model_kwargs']) |
| 43 | + model.load_state_dict(saved_gen['state_dict'], strict=False) |
| 44 | + def _remove_weight_norm(m): |
| 45 | + try: |
| 46 | + torch.nn.utils.remove_weight_norm(m) |
| 47 | + except ValueError: # this module didn't have weight norm |
| 48 | + return |
| 49 | + model.apply(_remove_weight_norm) |
| 50 | + |
| 51 | + |
| 52 | + print("dumping model...") |
| 53 | + quantize_model=args.quantize |
| 54 | + |
| 55 | + output_folder = args.export_folder |
| 56 | + os.makedirs(output_folder, exist_ok=True) |
| 57 | + |
| 58 | + writer = wexchange.c_export.c_writer.CWriter(os.path.join(output_folder, args.export_filename), model_struct_name=args.struct_name, add_typedef=True) |
| 59 | + |
| 60 | + for name, module in model.named_modules(): |
| 61 | + |
| 62 | + if quantize_model: |
| 63 | + quantize=name not in unquantized |
| 64 | + scale = None if quantize else 1/128 |
| 65 | + else: |
| 66 | + quantize=False |
| 67 | + scale=1/128 |
| 68 | + |
| 69 | + if isinstance(module, nn.Linear): |
| 70 | + print(f"dumping linear layer {name}...") |
| 71 | + wexchange.torch.dump_torch_dense_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale) |
| 72 | + |
| 73 | + elif isinstance(module, nn.Conv1d): |
| 74 | + print(f"dumping conv1d layer {name}...") |
| 75 | + wexchange.torch.dump_torch_conv1d_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale) |
| 76 | + |
| 77 | + elif isinstance(module, nn.GRU): |
| 78 | + print(f"dumping GRU layer {name}...") |
| 79 | + wexchange.torch.dump_torch_gru_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale, recurrent_scale=scale, input_sparse=True, recurrent_sparse=True) |
| 80 | + |
| 81 | + elif isinstance(module, nn.GRUCell): |
| 82 | + print(f"dumping GRUCell layer {name}...") |
| 83 | + wexchange.torch.dump_torch_grucell_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale, recurrent_scale=scale) |
| 84 | + |
| 85 | + elif isinstance(module, nn.Embedding): |
| 86 | + print(f"dumping Embedding layer {name}...") |
| 87 | + wexchange.torch.dump_torch_embedding_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale) |
| 88 | + #wexchange.torch.dump_torch_embedding_weights(writer, module) |
| 89 | + |
| 90 | + else: |
| 91 | + print(f"Ignoring layer {name}...") |
| 92 | + |
| 93 | + writer.close() |
0 commit comments