You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|2025.02| 🔥🔥🔥[**microsoft**] SeerAttention: Learning Intrinsic Sparse Attention in Your LLMs |[pdf](https://arxiv.org/abs/2410.13276)|[SeerAttention](https://github.com/microsoft/SeerAttention)| ⭐️⭐️⭐️ |
84
-
|2025.03|[**OpenMachine.ai**] Slim attention: cut your context memory in half without loss of accuracy, K-cache is all you need for MHA |[pdf](https://arxiv.org/pdf/2503.05840)|[OpenMchine](https://github.com/OpenMachine-ai/transformer-tricks)| ⭐️⭐️⭐️ |
@@ -281,6 +279,8 @@ python3 download_pdfs.py # The code is generated by Doubao AI
281
279
|2025.04|🔥🔥[**MMInference**] MMInference: Accelerating Pre-filling for Long-Context Visual Language Models via Modality-Aware Permutation Sparse Attention(@microsoft) |[[pdf]](https://arxiv.org/pdf/2504.16083)|[[MInference]](https://github.com/microsoft/MInference/)| ⭐️⭐️ |
282
280
|2025.04|🔥🔥[**Sparse Frontier**] The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs (@Cohere) |[[pdf]](https://arxiv.org/pdf/2504.17768)|[[SparseFrontier]](https://github.com/PiotrNawrot/sparse-frontier)| ⭐️⭐️ |
283
281
|2024.12|🔥🔥[**Flex Attention**] FLEX ATTENTION: A PROGRAMMING MODEL FOR GENERATING OPTIMIZED ATTENTION KERNELS(@pytorch) |[[pdf]](https://arxiv.org/pdf/2412.05496)|[[attention-gym]](https://github.com/pytorch-labs/attention-gym)| ⭐️⭐️ |
282
+
|2025.02| 🔥🔥🔥[**SeerAttention**] SeerAttention: Learning Intrinsic Sparse Attention in Your LLMs(@microsoft) |[[pdf]](https://arxiv.org/abs/2410.13276)|[[SeerAttention]](https://github.com/microsoft/SeerAttention)| ⭐️⭐️⭐️ |
283
+
|2025.03|[**Slim attention**] Slim attention: cut your context memory in half without loss of accuracy, K-cache is all you need for MHA(@OpenMachine.ai) |[[pdf]](https://arxiv.org/pdf/2503.05840)|[[OpenMchine]](https://github.com/OpenMachine-ai/transformer-tricks)| ⭐️⭐️⭐️ |
0 commit comments