|
| 1 | +#include <stdio.h> |
| 2 | +#include <stdlib.h> |
| 3 | +#include <float.h> |
| 4 | +#include <vector> |
| 5 | +#include <algorithm> |
| 6 | +#include <cuda_runtime.h> |
| 7 | +#include <cuda_fp16.h> |
| 8 | +#include <cuda_bf16.h> |
| 9 | +#include <cuda_fp8.h> |
| 10 | +#include <torch/types.h> |
| 11 | +#include <torch/extension.h> |
| 12 | + |
| 13 | +#define INT4(value) (reinterpret_cast<int4*>(&(value))[0]) |
| 14 | +#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0]) |
| 15 | +#define HALF2(value) (reinterpret_cast<half2*>(&(value))[0]) |
| 16 | +#define BFLOAT2(value) (reinterpret_cast<__nv_bfloat162*>(&(value))[0]) |
| 17 | +#define LDST64BITS(value) (reinterpret_cast<float2*>(&(value))[0]) |
| 18 | +#define LDST128BITS(value) (reinterpret_cast<float4*>(&(value))[0]) |
| 19 | +#define CP_ASYNC_COMMIT_GROUP() asm volatile("cp.async.commit_group;\n" ::) |
| 20 | +#define CP_ASYNC_WAIT_ALL() asm volatile("cp.async.wait_all;\n" ::) |
| 21 | +#define CP_ASYNC_WAIT_GROUP(n) asm volatile("cp.async.wait_group %0;\n" ::"n"(n)) |
| 22 | +// ca(cache all, L1 + L2): support 4, 8, 16 bytes, cg(cache global, L2): only support 16 bytes. |
| 23 | +#define CP_ASYNC_CA(dst, src, bytes) asm volatile("cp.async.ca.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(dst), "l"(src), "n"(bytes)) |
| 24 | +#define CP_ASYNC_CG(dst, src, bytes) asm volatile("cp.async.cg.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(dst), "l"(src), "n"(bytes)) |
| 25 | + |
| 26 | + |
| 27 | +template<const int BM=128, const int BN=128, const int BK=8, |
| 28 | + const int TM=8, const int TN=8, const int OFFSET=0> |
| 29 | +__global__ void sgemm_t_8x8_sliced_k_f32x4_bcf_dbuf_async_kernel( |
| 30 | + float* a, float* b, float* c, const int M, const int N, const int K) { |
| 31 | + |
| 32 | + const int bx = blockIdx.x; |
| 33 | + const int by = blockIdx.y; |
| 34 | + const int tx = threadIdx.x; |
| 35 | + const int ty = threadIdx.y; |
| 36 | + const int tid = ty * blockDim.x + tx; |
| 37 | + |
| 38 | + __shared__ float s_a[2][BK][BM + OFFSET]; |
| 39 | + __shared__ float s_b[2][BK][BN + OFFSET]; |
| 40 | + |
| 41 | + float r_comp_a[TM]; |
| 42 | + float r_comp_b[TN]; |
| 43 | + float r_c[TM][TN] = {0.0}; |
| 44 | + |
| 45 | + int load_a_smem_m = tid / 2; // tid / 2,(0,1,2,...,128) |
| 46 | + int load_a_smem_k = (tid & 1) << 2; // (0,4) |
| 47 | + int load_b_smem_k = tid / 32; // 0~8 |
| 48 | + int load_b_smem_n = (tid & 31) << 2; // (0,4,8,12,...,124) |
| 49 | + int load_a_gmem_m = by * BM + load_a_smem_m; |
| 50 | + int load_b_gmem_n = bx * BN + load_b_smem_n; |
| 51 | + |
| 52 | + { |
| 53 | + int load_a_gmem_k = load_a_smem_k; |
| 54 | + int load_a_gmem_addr = load_a_gmem_m * K + load_a_gmem_k; |
| 55 | + int load_b_gmem_k = load_b_smem_k; |
| 56 | + int load_b_gmem_addr = load_b_gmem_k * N + load_b_gmem_n; |
| 57 | + |
| 58 | + uint32_t load_b_smem_ptr = __cvta_generic_to_shared( |
| 59 | + &s_b[0][load_b_smem_k][load_b_smem_n]); |
| 60 | + // 1 cp.async issue, 16 bytes = 4 float. |
| 61 | + CP_ASYNC_CA(load_b_smem_ptr, &b[load_b_gmem_addr], 16); |
| 62 | + CP_ASYNC_COMMIT_GROUP(); |
| 63 | + |
| 64 | + #pragma unroll |
| 65 | + for (int i = 0; i < 4; ++i) { |
| 66 | + // 4 cp.async issues, 4 bytes = 1 float. |
| 67 | + uint32_t load_a_smem_ptr = __cvta_generic_to_shared( |
| 68 | + &s_a[0][load_a_smem_k + i][load_a_smem_m]); |
| 69 | + CP_ASYNC_CA(load_a_smem_ptr, &a[load_a_gmem_addr + i], 4); |
| 70 | + } |
| 71 | + CP_ASYNC_COMMIT_GROUP(); |
| 72 | + CP_ASYNC_WAIT_GROUP(0); |
| 73 | + } |
| 74 | + __syncthreads(); |
| 75 | + |
| 76 | + for (int bk = 1; bk < (K + BK - 1) / BK; bk++) { |
| 77 | + |
| 78 | + int smem_sel = (bk - 1) & 1; |
| 79 | + int smem_sel_next = bk & 1; |
| 80 | + |
| 81 | + int load_a_gmem_k = bk * BK + load_a_smem_k; |
| 82 | + int load_a_gmem_addr = load_a_gmem_m * K + load_a_gmem_k; |
| 83 | + int load_b_gmem_k = bk * BK + load_b_smem_k; |
| 84 | + int load_b_gmem_addr = load_b_gmem_k * N + load_b_gmem_n; |
| 85 | + |
| 86 | + uint32_t load_b_smem_ptr = __cvta_generic_to_shared( |
| 87 | + &s_b[smem_sel_next][load_b_smem_k][load_b_smem_n]); |
| 88 | + // 1 cp.async issue, 16 bytes = 4 float. |
| 89 | + CP_ASYNC_CA(load_b_smem_ptr, &b[load_b_gmem_addr], 16); |
| 90 | + CP_ASYNC_COMMIT_GROUP(); |
| 91 | + |
| 92 | + #pragma unroll |
| 93 | + for (int i = 0; i < 4; ++i) { |
| 94 | + // 4 cp.async issues, 4 bytes = 1 float. |
| 95 | + uint32_t load_a_smem_ptr = __cvta_generic_to_shared( |
| 96 | + &s_a[smem_sel_next][load_a_smem_k + i][load_a_smem_m]); |
| 97 | + CP_ASYNC_CA(load_a_smem_ptr, &a[load_a_gmem_addr + i], 4); |
| 98 | + } |
| 99 | + CP_ASYNC_COMMIT_GROUP(); |
| 100 | + |
| 101 | + #pragma unroll |
| 102 | + for (int tk = 0; tk < BK; tk++) { |
| 103 | + FLOAT4(r_comp_a[0]) = FLOAT4(s_a[smem_sel][tk][ty * TM / 2 ]); |
| 104 | + FLOAT4(r_comp_a[4]) = FLOAT4(s_a[smem_sel][tk][ty * TM / 2 + BM / 2]); |
| 105 | + FLOAT4(r_comp_b[0]) = FLOAT4(s_b[smem_sel][tk][tx * TN / 2 ]); |
| 106 | + FLOAT4(r_comp_b[4]) = FLOAT4(s_b[smem_sel][tk][tx * TN / 2 + BN / 2]); |
| 107 | + |
| 108 | + #pragma unroll |
| 109 | + for (int tm = 0; tm < TM; tm++) { |
| 110 | + #pragma unroll |
| 111 | + for (int tn = 0; tn < TN; tn++) { |
| 112 | + r_c[tm][tn] = __fmaf_rn(r_comp_a[tm], r_comp_b[tn], r_c[tm][tn]); |
| 113 | + } |
| 114 | + } |
| 115 | + } |
| 116 | + |
| 117 | + CP_ASYNC_WAIT_GROUP(0); |
| 118 | + __syncthreads(); |
| 119 | + } |
| 120 | + |
| 121 | + #pragma unroll |
| 122 | + for (int tk = 0; tk < BK; tk++) { |
| 123 | + FLOAT4(r_comp_a[0]) = FLOAT4(s_a[1][tk][ty * TM / 2 ]); |
| 124 | + FLOAT4(r_comp_a[4]) = FLOAT4(s_a[1][tk][ty * TM / 2 + BM / 2]); |
| 125 | + FLOAT4(r_comp_b[0]) = FLOAT4(s_b[1][tk][tx * TN / 2 ]); |
| 126 | + FLOAT4(r_comp_b[4]) = FLOAT4(s_b[1][tk][tx * TN / 2 + BN / 2]); |
| 127 | + |
| 128 | + #pragma unroll |
| 129 | + for (int tm = 0; tm < TM; tm++) { |
| 130 | + #pragma unroll |
| 131 | + for (int tn = 0; tn < TN; tn++) { |
| 132 | + r_c[tm][tn] = __fmaf_rn(r_comp_a[tm], r_comp_b[tn], r_c[tm][tn]); |
| 133 | + } |
| 134 | + } |
| 135 | + } |
| 136 | + |
| 137 | + #pragma unroll |
| 138 | + for (int i = 0; i < TM / 2; i++) { |
| 139 | + int store_c_gmem_m = by * BM + ty * TM / 2 + i; |
| 140 | + int store_c_gmem_n = bx * BN + tx * TN / 2; |
| 141 | + int store_c_gmem_addr = store_c_gmem_m * N + store_c_gmem_n; |
| 142 | + FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i][0]); |
| 143 | + FLOAT4(c[store_c_gmem_addr + BN / 2]) = FLOAT4(r_c[i][4]); |
| 144 | + } |
| 145 | + #pragma unroll |
| 146 | + for (int i = 0; i < TM / 2; i++) { |
| 147 | + int store_c_gmem_m = by * BM + BM / 2 + ty * TM / 2 + i; |
| 148 | + int store_c_gmem_n = bx * BN + tx * TN / 2; |
| 149 | + int store_c_gmem_addr = store_c_gmem_m * N + store_c_gmem_n; |
| 150 | + FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i + TM / 2][0]); |
| 151 | + FLOAT4(c[store_c_gmem_addr + BN / 2]) = FLOAT4(r_c[i + TM / 2][4]); |
| 152 | + } |
| 153 | +} |
| 154 | + |
| 155 | +// TODO: sgemm_t_8x8_sliced_k16_f32x4_bcf_dbuf_{async}_kernel |
| 156 | + |
| 157 | +// --------------------- PyTorch bindings for custom kernel ----------------------- |
| 158 | +#define STRINGFY(str) #str |
| 159 | +#define TORCH_BINDING_COMMON_EXTENSION(func) \ |
| 160 | + m.def(STRINGFY(func), &func, STRINGFY(func)); |
| 161 | + |
| 162 | +#define CHECK_TORCH_TENSOR_DTYPE(T, th_type) \ |
| 163 | +if(((T).options().dtype() != (th_type))) { \ |
| 164 | + std::cout << "Tensor Info:" << (T).options() << std::endl; \ |
| 165 | + throw std::runtime_error("values must be "#th_type); \ |
| 166 | +} |
| 167 | + |
| 168 | +#define CHECK_TORCH_TENSOR_SHAPE(T, S0, S1) \ |
| 169 | +if (((T).size(0) != (S0)) || ((T).size(1) != (S1))) { \ |
| 170 | + throw std::runtime_error("Tensor size mismatch!"); \ |
| 171 | +} |
| 172 | + |
| 173 | + |
| 174 | +void sgemm_t_8x8_sliced_k_f32x4_bcf_dbuf_async( |
| 175 | + torch::Tensor a, torch::Tensor b, torch::Tensor c) { |
| 176 | + CHECK_TORCH_TENSOR_DTYPE(a, torch::kFloat32) |
| 177 | + CHECK_TORCH_TENSOR_DTYPE(b, torch::kFloat32) |
| 178 | + CHECK_TORCH_TENSOR_DTYPE(c, torch::kFloat32) |
| 179 | + const int M = a.size(0); |
| 180 | + const int K = a.size(1); |
| 181 | + const int N = b.size(1); |
| 182 | + CHECK_TORCH_TENSOR_SHAPE(a, M, K) |
| 183 | + CHECK_TORCH_TENSOR_SHAPE(b, K, N) |
| 184 | + CHECK_TORCH_TENSOR_SHAPE(c, M, N) |
| 185 | + constexpr int BM = 128; |
| 186 | + constexpr int BN = 128; |
| 187 | + constexpr int BK = 8; |
| 188 | + constexpr int TM = 8; |
| 189 | + constexpr int TN = 8; |
| 190 | + |
| 191 | + dim3 block(BN/TN, BM/TM); |
| 192 | + dim3 grid((N + BN - 1) / BN, (M + BM - 1) / BM); |
| 193 | + |
| 194 | + sgemm_t_8x8_sliced_k_f32x4_bcf_dbuf_async_kernel< |
| 195 | + BM, BN, BK, TM, TN><<<grid, block>>>( |
| 196 | + reinterpret_cast<float*>(a.data_ptr()), |
| 197 | + reinterpret_cast<float*>(b.data_ptr()), |
| 198 | + reinterpret_cast<float*>(c.data_ptr()), |
| 199 | + M, N, K |
| 200 | + ); |
| 201 | +} |
0 commit comments