-
Notifications
You must be signed in to change notification settings - Fork 11
Description
xllamacpp版本: 0.1.20+rocm6.4.1
xinference版本:1.7.0.post1
日志:
(xinf) root@DESKTOP-ESRGKIB:/usr/local# VLLM_USE_TRITON_FLASH_ATTN=0 Environment="XINFERENCE_MODEL_SRC=modelscope" HF_ENDPOINT=https://hf-mirror.com PYTORCH_HIP_ALLOC_CONF=garbage_collection_threshold:0.8,max_split_size_mb:512,expandable_segments:True xinference-local --host 0.0.0.0 --port 9997
2025-06-16 17:50:31.238092: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512_VNNI AVX512_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
/root/miniconda3/envs/xinf/lib/python3.10/site-packages/torch/cuda/init.py:736: UserWarning: Can't initialize amdsmi - Error code: 34
warnings.warn(f"Can't initialize amdsmi - Error code: {e.err_code}")
is_rocm: True
is_rocm: True
INFO 06-16 17:50:34 [init.py:257] Automatically detected platform rocm.
2025-06-16 17:50:38,173 xinference.core.supervisor 2339 INFO Xinference supervisor 0.0.0.0:62075 started
2025-06-16 17:50:38,197 xinference.core.worker 2339 INFO Starting metrics export server at 0.0.0.0:None
2025-06-16 17:50:38,199 xinference.core.worker 2339 INFO Checking metrics export server...
2025-06-16 17:50:40,031 xinference.core.worker 2339 INFO Metrics server is started at: http://0.0.0.0:46238
2025-06-16 17:50:40,032 xinference.core.worker 2339 INFO Purge cache directory: /root/.xinference/cache
2025-06-16 17:50:40,034 xinference.core.worker 2339 INFO Connected to supervisor as a fresh worker
2025-06-16 17:50:40,050 xinference.core.worker 2339 INFO Xinference worker 0.0.0.0:62075 started
2025-06-16 17:50:45,185 xinference.api.restful_api 2301 INFO Starting Xinference at endpoint: http://0.0.0.0:9997
2025-06-16 17:50:45,329 uvicorn.error 2301 INFO Uvicorn running on http://0.0.0.0:9997 (Press CTRL+C to quit)
2025-06-16 17:51:37,844 xinference.core.worker 2339 INFO [request 7eecc442-4a97-11f0-8d12-58cdc986b77d] Enter launch_builtin_model, args: <xinference.core.worker.WorkerActor object at 0x7fb23a110d60>, kwargs: model_uid=deepseek-r1-distill-qwen-0,model_name=deepseek-r1-distill-qwen,model_size_in_billions=14,model_format=ggufv2,quantization=Q4_K_M,model_engine=llama.cpp,model_type=LLM,n_gpu=1,request_limits=None,peft_model_config=None,gpu_idx=None,download_hub=None,model_path=/usr/local/models/ds-ai/DeepSeek-R1-Distill-Qwen-14B,xavier_config=None,reasoning_content=False
/root/miniconda3/envs/xinf/lib/python3.10/site-packages/torch/cuda/init.py:736: UserWarning: Can't initialize amdsmi - Error code: 34
warnings.warn(f"Can't initialize amdsmi - Error code: {e.err_code}")
is_rocm: True
is_rocm: True
INFO 06-16 17:51:52 [init.py:257] Automatically detected platform rocm.
2025-06-16 17:51:56,341 xinference.core.model 2353 INFO Start requests handler.
build: 1 (e54b394) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 8
system_info: n_threads = 8 (n_threads_batch = 8) / 8 | ROCm : NO_VMM = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
init: loading model
srv load_model: loading model '/usr/local/models/ds-ai/DeepSeek-R1-Distill-Qwen-14B/DeepSeek-R1-Distill-Qwen-14B-Q4_K_M.gguf'
llama_model_loader: loaded meta data with 27 key-value pairs and 579 tensors from /usr/local/models/ds-ai/DeepSeek-R1-Distill-Qwen-14B/DeepSeek-R1-Distill-Qwen-14B-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = DeepSeek R1 Distill Qwen 14B
llama_model_loader: - kv 3: general.organization str = Deepseek Ai
llama_model_loader: - kv 4: general.basename str = DeepSeek-R1-Distill-Qwen
llama_model_loader: - kv 5: general.size_label str = 14B
llama_model_loader: - kv 6: qwen2.block_count u32 = 48
llama_model_loader: - kv 7: qwen2.context_length u32 = 131072
llama_model_loader: - kv 8: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 9: qwen2.feed_forward_length u32 = 13824
llama_model_loader: - kv 10: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 11: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 12: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 14: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 15: tokenizer.ggml.pre str = deepseek-r1-qwen
llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,152064] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 18: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 151646
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 22: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 23: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: general.file_type u32 = 15
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 8.37 GiB (4.87 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 48
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 13824
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = -1
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 14B
print_info: model params = 14.77 B
print_info: general.name = DeepSeek R1 Distill Qwen 14B
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token = 151643 '<|end▁of▁sentence|>'
print_info: EOT token = 151643 '<|end▁of▁sentence|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|end▁of▁sentence|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: CPU model buffer size = 2457.29 MiB
load_tensors: CPU_REPACK model buffer size = 6108.75 MiB
...........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 8
llama_context: n_ctx = 131072
llama_context: n_ctx_per_seq = 16384
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (16384) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 4.64 MiB
llama_kv_cache_unified: CPU KV buffer size = 24576.00 MiB
llama_kv_cache_unified: size = 24576.00 MiB (131072 cells, 48 layers, 8 seqs), K (f16): 12288.00 MiB, V (f16): 12288.00 MiB
llama_context: CPU compute buffer size = 10536.01 MiB
llama_context: graph nodes = 1878
llama_context: graph splits = 1
common_init_from_params: setting dry_penalty_last_n to ctx_size = 131072
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 8
slot init: id 0 | task -1 | new slot n_ctx_slot = 16384
slot init: id 1 | task -1 | new slot n_ctx_slot = 16384
slot init: id 2 | task -1 | new slot n_ctx_slot = 16384
slot init: id 3 | task -1 | new slot n_ctx_slot = 16384
slot init: id 4 | task -1 | new slot n_ctx_slot = 16384
slot init: id 5 | task -1 | new slot n_ctx_slot = 16384
slot init: id 6 | task -1 | new slot n_ctx_slot = 16384
slot init: id 7 | task -1 | new slot n_ctx_slot = 16384
init: model loaded
init: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + 'json' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- else %}{{'<|Assistant|>' + message['content'] + '<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + 'json' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + 'json' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- endif %}{%- endfor %}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '' in content %}{% set content = content.split('')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin |><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>\n'}}{% endif %}, example_format: 'You are a helpful assistant
<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
init: starting the main loop
srv update_slots: all slots are idle
2025-06-16 17:52:47,905 xinference.core.model 2353 INFO ModelActor(deepseek-r1-distill-qwen-0) loaded
2025-06-16 17:52:48,010 xinference.core.worker 2339 INFO [request 7eecc442-4a97-11f0-8d12-58cdc986b77d] Leave launch_builtin_model, elapsed time: 70 s
2025-06-16 17:52:48,048 xinference.core.worker 2339 INFO [request a8c44f06-4a97-11f0-8d12-58cdc986b77d] Enter wait_for_load, args: <xinference.core.worker.WorkerActor object at 0x7fb23a110d60>,deepseek-r1-distill-qwen-0, kwargs:
2025-06-16 17:52:48,064 xinference.core.worker 2339 INFO [request a8c44f06-4a97-11f0-8d12-58cdc986b77d] Leave wait_for_load, elapsed time: 0 s
2025-06-16 17:53:24,474 xinference.core.worker 2339 INFO [request be7b246e-4a97-11f0-8d12-58cdc986b77d] Enter terminate_model, args: <xinference.core.worker.WorkerActor object at 0x7fb23a110d60>, kwargs: model_uid=deepseek-r1-distill-qwen-0