|
| 1 | +# Copyright The OpenTelemetry Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +# Includes work from: |
| 16 | +# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 17 | +# SPDX-License-Identifier: Apache-2.0 |
| 18 | + |
| 19 | +from __future__ import annotations |
| 20 | + |
| 21 | +import io |
| 22 | +import json |
| 23 | +import logging |
| 24 | +import math |
| 25 | +from typing import Any |
| 26 | + |
| 27 | +from botocore.response import StreamingBody |
| 28 | + |
| 29 | +from opentelemetry.instrumentation.botocore.extensions.types import ( |
| 30 | + _AttributeMapT, |
| 31 | + _AwsSdkExtension, |
| 32 | +) |
| 33 | +from opentelemetry.semconv._incubating.attributes.gen_ai_attributes import ( |
| 34 | + GEN_AI_OPERATION_NAME, |
| 35 | + GEN_AI_REQUEST_MAX_TOKENS, |
| 36 | + GEN_AI_REQUEST_MODEL, |
| 37 | + GEN_AI_REQUEST_TEMPERATURE, |
| 38 | + GEN_AI_REQUEST_TOP_P, |
| 39 | + GEN_AI_RESPONSE_FINISH_REASONS, |
| 40 | + GEN_AI_SYSTEM, |
| 41 | + GEN_AI_USAGE_INPUT_TOKENS, |
| 42 | + GEN_AI_USAGE_OUTPUT_TOKENS, |
| 43 | + GenAiOperationNameValues, |
| 44 | + GenAiSystemValues, |
| 45 | +) |
| 46 | +from opentelemetry.trace.span import Span |
| 47 | + |
| 48 | +_logger = logging.getLogger(__name__) |
| 49 | + |
| 50 | +_MODEL_ID_KEY: str = "modelId" |
| 51 | + |
| 52 | + |
| 53 | +class _BedrockRuntimeExtension(_AwsSdkExtension): |
| 54 | + """ |
| 55 | + This class is an extension for <a |
| 56 | + href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_Operations_Amazon_Bedrock_Runtime.html"> |
| 57 | + Amazon Bedrock Runtime</a>. |
| 58 | + """ |
| 59 | + |
| 60 | + def extract_attributes(self, attributes: _AttributeMapT): |
| 61 | + attributes[GEN_AI_SYSTEM] = GenAiSystemValues.AWS_BEDROCK |
| 62 | + attributes[GEN_AI_OPERATION_NAME] = GenAiOperationNameValues.CHAT |
| 63 | + |
| 64 | + model_id = self._call_context.params.get(_MODEL_ID_KEY) |
| 65 | + if model_id: |
| 66 | + attributes[GEN_AI_REQUEST_MODEL] = model_id |
| 67 | + |
| 68 | + # Get the request body if it exists |
| 69 | + body = self._call_context.params.get("body") |
| 70 | + if body: |
| 71 | + try: |
| 72 | + request_body = json.loads(body) |
| 73 | + |
| 74 | + if "amazon.titan" in model_id: |
| 75 | + self._extract_titan_attributes( |
| 76 | + attributes, request_body |
| 77 | + ) |
| 78 | + if "amazon.nova" in model_id: |
| 79 | + self._extract_nova_attributes(attributes, request_body) |
| 80 | + elif "anthropic.claude" in model_id: |
| 81 | + self._extract_claude_attributes( |
| 82 | + attributes, request_body |
| 83 | + ) |
| 84 | + elif "meta.llama" in model_id: |
| 85 | + self._extract_llama_attributes( |
| 86 | + attributes, request_body |
| 87 | + ) |
| 88 | + elif "cohere.command" in model_id: |
| 89 | + self._extract_cohere_attributes( |
| 90 | + attributes, request_body |
| 91 | + ) |
| 92 | + elif "ai21.jamba" in model_id: |
| 93 | + self._extract_ai21_attributes(attributes, request_body) |
| 94 | + elif "mistral" in model_id: |
| 95 | + self._extract_mistral_attributes( |
| 96 | + attributes, request_body |
| 97 | + ) |
| 98 | + |
| 99 | + except json.JSONDecodeError: |
| 100 | + _logger.debug("Error: Unable to parse the body as JSON") |
| 101 | + |
| 102 | + def _extract_titan_attributes(self, attributes, request_body): |
| 103 | + config = request_body.get("textGenerationConfig", {}) |
| 104 | + self._set_if_not_none( |
| 105 | + attributes, GEN_AI_REQUEST_TEMPERATURE, config.get("temperature") |
| 106 | + ) |
| 107 | + self._set_if_not_none( |
| 108 | + attributes, GEN_AI_REQUEST_TOP_P, config.get("topP") |
| 109 | + ) |
| 110 | + self._set_if_not_none( |
| 111 | + attributes, GEN_AI_REQUEST_MAX_TOKENS, config.get("maxTokenCount") |
| 112 | + ) |
| 113 | + |
| 114 | + def _extract_nova_attributes(self, attributes, request_body): |
| 115 | + config = request_body.get("inferenceConfig", {}) |
| 116 | + self._set_if_not_none( |
| 117 | + attributes, GEN_AI_REQUEST_TEMPERATURE, config.get("temperature") |
| 118 | + ) |
| 119 | + self._set_if_not_none( |
| 120 | + attributes, GEN_AI_REQUEST_TOP_P, config.get("top_p") |
| 121 | + ) |
| 122 | + self._set_if_not_none( |
| 123 | + attributes, GEN_AI_REQUEST_MAX_TOKENS, config.get("max_new_tokens") |
| 124 | + ) |
| 125 | + |
| 126 | + def _extract_claude_attributes(self, attributes, request_body): |
| 127 | + self._set_if_not_none( |
| 128 | + attributes, |
| 129 | + GEN_AI_REQUEST_MAX_TOKENS, |
| 130 | + request_body.get("max_tokens"), |
| 131 | + ) |
| 132 | + self._set_if_not_none( |
| 133 | + attributes, |
| 134 | + GEN_AI_REQUEST_TEMPERATURE, |
| 135 | + request_body.get("temperature"), |
| 136 | + ) |
| 137 | + self._set_if_not_none( |
| 138 | + attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p") |
| 139 | + ) |
| 140 | + |
| 141 | + def _extract_cohere_attributes(self, attributes, request_body): |
| 142 | + prompt = request_body.get("message") |
| 143 | + if prompt: |
| 144 | + attributes[GEN_AI_USAGE_INPUT_TOKENS] = math.ceil(len(prompt) / 6) |
| 145 | + self._set_if_not_none( |
| 146 | + attributes, |
| 147 | + GEN_AI_REQUEST_MAX_TOKENS, |
| 148 | + request_body.get("max_tokens"), |
| 149 | + ) |
| 150 | + self._set_if_not_none( |
| 151 | + attributes, |
| 152 | + GEN_AI_REQUEST_TEMPERATURE, |
| 153 | + request_body.get("temperature"), |
| 154 | + ) |
| 155 | + self._set_if_not_none( |
| 156 | + attributes, GEN_AI_REQUEST_TOP_P, request_body.get("p") |
| 157 | + ) |
| 158 | + |
| 159 | + def _extract_ai21_attributes(self, attributes, request_body): |
| 160 | + self._set_if_not_none( |
| 161 | + attributes, |
| 162 | + GEN_AI_REQUEST_MAX_TOKENS, |
| 163 | + request_body.get("max_tokens"), |
| 164 | + ) |
| 165 | + self._set_if_not_none( |
| 166 | + attributes, |
| 167 | + GEN_AI_REQUEST_TEMPERATURE, |
| 168 | + request_body.get("temperature"), |
| 169 | + ) |
| 170 | + self._set_if_not_none( |
| 171 | + attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p") |
| 172 | + ) |
| 173 | + |
| 174 | + def _extract_llama_attributes(self, attributes, request_body): |
| 175 | + self._set_if_not_none( |
| 176 | + attributes, |
| 177 | + GEN_AI_REQUEST_MAX_TOKENS, |
| 178 | + request_body.get("max_gen_len"), |
| 179 | + ) |
| 180 | + self._set_if_not_none( |
| 181 | + attributes, |
| 182 | + GEN_AI_REQUEST_TEMPERATURE, |
| 183 | + request_body.get("temperature"), |
| 184 | + ) |
| 185 | + self._set_if_not_none( |
| 186 | + attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p") |
| 187 | + ) |
| 188 | + |
| 189 | + def _extract_mistral_attributes(self, attributes, request_body): |
| 190 | + prompt = request_body.get("prompt") |
| 191 | + if prompt: |
| 192 | + attributes[GEN_AI_USAGE_INPUT_TOKENS] = math.ceil(len(prompt) / 6) |
| 193 | + self._set_if_not_none( |
| 194 | + attributes, |
| 195 | + GEN_AI_REQUEST_MAX_TOKENS, |
| 196 | + request_body.get("max_tokens"), |
| 197 | + ) |
| 198 | + self._set_if_not_none( |
| 199 | + attributes, |
| 200 | + GEN_AI_REQUEST_TEMPERATURE, |
| 201 | + request_body.get("temperature"), |
| 202 | + ) |
| 203 | + self._set_if_not_none( |
| 204 | + attributes, GEN_AI_REQUEST_TOP_P, request_body.get("top_p") |
| 205 | + ) |
| 206 | + |
| 207 | + @staticmethod |
| 208 | + def _set_if_not_none(attributes, key, value): |
| 209 | + if value is not None: |
| 210 | + attributes[key] = value |
| 211 | + |
| 212 | + # pylint: disable=too-many-branches |
| 213 | + def on_success(self, span: Span, result: dict[str, Any]): |
| 214 | + model_id = self._call_context.params.get(_MODEL_ID_KEY) |
| 215 | + |
| 216 | + if not model_id: |
| 217 | + return |
| 218 | + |
| 219 | + if "body" in result and isinstance(result["body"], StreamingBody): |
| 220 | + original_body = None |
| 221 | + try: |
| 222 | + original_body = result["body"] |
| 223 | + body_content = original_body.read() |
| 224 | + |
| 225 | + # Use one stream for telemetry |
| 226 | + stream = io.BytesIO(body_content) |
| 227 | + telemetry_content = stream.read() |
| 228 | + response_body = json.loads(telemetry_content.decode("utf-8")) |
| 229 | + if "amazon.titan" in model_id: |
| 230 | + self._handle_amazon_titan_response(span, response_body) |
| 231 | + if "amazon.nova" in model_id: |
| 232 | + self._handle_amazon_nova_response(span, response_body) |
| 233 | + elif "anthropic.claude" in model_id: |
| 234 | + self._handle_anthropic_claude_response(span, response_body) |
| 235 | + elif "meta.llama" in model_id: |
| 236 | + self._handle_meta_llama_response(span, response_body) |
| 237 | + elif "cohere.command" in model_id: |
| 238 | + self._handle_cohere_command_response(span, response_body) |
| 239 | + elif "ai21.jamba" in model_id: |
| 240 | + self._handle_ai21_jamba_response(span, response_body) |
| 241 | + elif "mistral" in model_id: |
| 242 | + self._handle_mistral_mistral_response(span, response_body) |
| 243 | + # Replenish stream for downstream application use |
| 244 | + new_stream = io.BytesIO(body_content) |
| 245 | + result["body"] = StreamingBody(new_stream, len(body_content)) |
| 246 | + |
| 247 | + except json.JSONDecodeError: |
| 248 | + _logger.debug( |
| 249 | + "Error: Unable to parse the response body as JSON" |
| 250 | + ) |
| 251 | + except Exception as e: # pylint: disable=broad-exception-caught, invalid-name |
| 252 | + _logger.debug("Error processing response: %s", e) |
| 253 | + finally: |
| 254 | + if original_body is not None: |
| 255 | + original_body.close() |
| 256 | + |
| 257 | + # pylint: disable=no-self-use |
| 258 | + def _handle_amazon_titan_response( |
| 259 | + self, span: Span, response_body: dict[str, Any] |
| 260 | + ): |
| 261 | + if "inputTextTokenCount" in response_body: |
| 262 | + span.set_attribute( |
| 263 | + GEN_AI_USAGE_INPUT_TOKENS, response_body["inputTextTokenCount"] |
| 264 | + ) |
| 265 | + if "results" in response_body and response_body["results"]: |
| 266 | + result = response_body["results"][0] |
| 267 | + if "tokenCount" in result: |
| 268 | + span.set_attribute( |
| 269 | + GEN_AI_USAGE_OUTPUT_TOKENS, result["tokenCount"] |
| 270 | + ) |
| 271 | + if "completionReason" in result: |
| 272 | + span.set_attribute( |
| 273 | + GEN_AI_RESPONSE_FINISH_REASONS, |
| 274 | + [result["completionReason"]], |
| 275 | + ) |
| 276 | + |
| 277 | + # pylint: disable=no-self-use |
| 278 | + def _handle_amazon_nova_response( |
| 279 | + self, span: Span, response_body: dict[str, Any] |
| 280 | + ): |
| 281 | + if "usage" in response_body: |
| 282 | + usage = response_body["usage"] |
| 283 | + if "inputTokens" in usage: |
| 284 | + span.set_attribute( |
| 285 | + GEN_AI_USAGE_INPUT_TOKENS, usage["inputTokens"] |
| 286 | + ) |
| 287 | + if "outputTokens" in usage: |
| 288 | + span.set_attribute( |
| 289 | + GEN_AI_USAGE_OUTPUT_TOKENS, usage["outputTokens"] |
| 290 | + ) |
| 291 | + if "stopReason" in response_body: |
| 292 | + span.set_attribute( |
| 293 | + GEN_AI_RESPONSE_FINISH_REASONS, [response_body["stopReason"]] |
| 294 | + ) |
| 295 | + |
| 296 | + # pylint: disable=no-self-use |
| 297 | + def _handle_anthropic_claude_response( |
| 298 | + self, span: Span, response_body: dict[str, Any] |
| 299 | + ): |
| 300 | + if "usage" in response_body: |
| 301 | + usage = response_body["usage"] |
| 302 | + if "input_tokens" in usage: |
| 303 | + span.set_attribute( |
| 304 | + GEN_AI_USAGE_INPUT_TOKENS, usage["input_tokens"] |
| 305 | + ) |
| 306 | + if "output_tokens" in usage: |
| 307 | + span.set_attribute( |
| 308 | + GEN_AI_USAGE_OUTPUT_TOKENS, usage["output_tokens"] |
| 309 | + ) |
| 310 | + if "stop_reason" in response_body: |
| 311 | + span.set_attribute( |
| 312 | + GEN_AI_RESPONSE_FINISH_REASONS, [response_body["stop_reason"]] |
| 313 | + ) |
| 314 | + |
| 315 | + # pylint: disable=no-self-use |
| 316 | + def _handle_cohere_command_response( |
| 317 | + self, span: Span, response_body: dict[str, Any] |
| 318 | + ): |
| 319 | + # Output tokens: Approximate from the response text |
| 320 | + if "text" in response_body: |
| 321 | + span.set_attribute( |
| 322 | + GEN_AI_USAGE_OUTPUT_TOKENS, |
| 323 | + math.ceil(len(response_body["text"]) / 6), |
| 324 | + ) |
| 325 | + if "finish_reason" in response_body: |
| 326 | + span.set_attribute( |
| 327 | + GEN_AI_RESPONSE_FINISH_REASONS, |
| 328 | + [response_body["finish_reason"]], |
| 329 | + ) |
| 330 | + |
| 331 | + # pylint: disable=no-self-use |
| 332 | + def _handle_ai21_jamba_response( |
| 333 | + self, span: Span, response_body: dict[str, Any] |
| 334 | + ): |
| 335 | + if "usage" in response_body: |
| 336 | + usage = response_body["usage"] |
| 337 | + if "prompt_tokens" in usage: |
| 338 | + span.set_attribute( |
| 339 | + GEN_AI_USAGE_INPUT_TOKENS, usage["prompt_tokens"] |
| 340 | + ) |
| 341 | + if "completion_tokens" in usage: |
| 342 | + span.set_attribute( |
| 343 | + GEN_AI_USAGE_OUTPUT_TOKENS, usage["completion_tokens"] |
| 344 | + ) |
| 345 | + if "choices" in response_body: |
| 346 | + choices = response_body["choices"][0] |
| 347 | + if "finish_reason" in choices: |
| 348 | + span.set_attribute( |
| 349 | + GEN_AI_RESPONSE_FINISH_REASONS, [choices["finish_reason"]] |
| 350 | + ) |
| 351 | + |
| 352 | + # pylint: disable=no-self-use |
| 353 | + def _handle_meta_llama_response( |
| 354 | + self, span: Span, response_body: dict[str, Any] |
| 355 | + ): |
| 356 | + if "prompt_token_count" in response_body: |
| 357 | + span.set_attribute( |
| 358 | + GEN_AI_USAGE_INPUT_TOKENS, response_body["prompt_token_count"] |
| 359 | + ) |
| 360 | + if "generation_token_count" in response_body: |
| 361 | + span.set_attribute( |
| 362 | + GEN_AI_USAGE_OUTPUT_TOKENS, |
| 363 | + response_body["generation_token_count"], |
| 364 | + ) |
| 365 | + if "stop_reason" in response_body: |
| 366 | + span.set_attribute( |
| 367 | + GEN_AI_RESPONSE_FINISH_REASONS, [response_body["stop_reason"]] |
| 368 | + ) |
| 369 | + |
| 370 | + # pylint: disable=no-self-use |
| 371 | + def _handle_mistral_mistral_response( |
| 372 | + self, span: Span, response_body: dict[str, Any] |
| 373 | + ): |
| 374 | + if "outputs" in response_body: |
| 375 | + outputs = response_body["outputs"][0] |
| 376 | + if "text" in outputs: |
| 377 | + span.set_attribute( |
| 378 | + GEN_AI_USAGE_OUTPUT_TOKENS, |
| 379 | + math.ceil(len(outputs["text"]) / 6), |
| 380 | + ) |
| 381 | + if "stop_reason" in outputs: |
| 382 | + span.set_attribute( |
| 383 | + GEN_AI_RESPONSE_FINISH_REASONS, [outputs["stop_reason"]] |
| 384 | + ) |
0 commit comments