|
| 1 | +/*************************************************************************** |
| 2 | +* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and * |
| 3 | +* Martin Renou * |
| 4 | +* Copyright (c) QuantStack * |
| 5 | +* * |
| 6 | +* Distributed under the terms of the BSD 3-Clause License. * |
| 7 | +* * |
| 8 | +* The full license is in the file LICENSE, distributed with this software. * |
| 9 | +****************************************************************************/ |
| 10 | + |
| 11 | +#include "xsimd/math/xsimd_math_complex.hpp" |
| 12 | +#include "test_utils.hpp" |
| 13 | + |
| 14 | +template <class B> |
| 15 | +class complex_exponential_test : public testing::Test |
| 16 | +{ |
| 17 | +protected: |
| 18 | + |
| 19 | + using batch_type = B; |
| 20 | + using real_batch_type = typename B::real_batch; |
| 21 | + using value_type = typename B::value_type; |
| 22 | + using real_value_type = typename value_type::value_type; |
| 23 | + static constexpr size_t size = B::size; |
| 24 | + using vector_type = std::vector<value_type>; |
| 25 | + |
| 26 | + size_t nb_input; |
| 27 | + vector_type exp_input; |
| 28 | + vector_type huge_exp_input; |
| 29 | + vector_type log_input; |
| 30 | + vector_type expected; |
| 31 | + vector_type res; |
| 32 | + |
| 33 | + complex_exponential_test() |
| 34 | + { |
| 35 | + nb_input = 10000 * size; |
| 36 | + exp_input.resize(nb_input); |
| 37 | + huge_exp_input.resize(nb_input); |
| 38 | + log_input.resize(nb_input); |
| 39 | + for (size_t i = 0; i < nb_input; ++i) |
| 40 | + { |
| 41 | + exp_input[i] = value_type(real_value_type(-1.5) + i * real_value_type(3) / nb_input, |
| 42 | + real_value_type(-1.3) + i * real_value_type(2) / nb_input); |
| 43 | + huge_exp_input[i] = value_type(real_value_type(0), real_value_type(102.12) + i * real_value_type(100.) / nb_input); |
| 44 | + log_input[i] = value_type(real_value_type(0.001 + i * 100 / nb_input), |
| 45 | + real_value_type(0.002 + i * 110 / nb_input)); |
| 46 | + } |
| 47 | + expected.resize(nb_input); |
| 48 | + res.resize(nb_input); |
| 49 | + } |
| 50 | + |
| 51 | + void test_exp() |
| 52 | + { |
| 53 | + std::transform(exp_input.cbegin(), exp_input.cend(), expected.begin(), |
| 54 | + [](const value_type& v) { using std::exp; return exp(v); }); |
| 55 | + batch_type in, out; |
| 56 | + for (size_t i = 0; i < nb_input; i += size) |
| 57 | + { |
| 58 | + detail::load_batch(in, exp_input, i); |
| 59 | + out = exp(in); |
| 60 | + detail::store_batch(out, res, i); |
| 61 | + } |
| 62 | + size_t diff = detail::get_nb_diff(res, expected); |
| 63 | + EXPECT_EQ(diff, 0) << print_function_name("exp"); |
| 64 | + } |
| 65 | + |
| 66 | + void test_expm1() |
| 67 | + { |
| 68 | + std::transform(exp_input.cbegin(), exp_input.cend(), expected.begin(), |
| 69 | + [](const value_type& v) { using xsimd::expm1; return expm1(v); }); |
| 70 | + |
| 71 | + batch_type in, out; |
| 72 | + for (size_t i = 0; i < nb_input; i += size) |
| 73 | + { |
| 74 | + detail::load_batch(in, exp_input, i); |
| 75 | + out = expm1(in); |
| 76 | + detail::store_batch(out, res, i); |
| 77 | + } |
| 78 | + size_t diff = detail::get_nb_diff(res, expected); |
| 79 | + EXPECT_EQ(diff, 0) << print_function_name("expm1"); |
| 80 | + } |
| 81 | + |
| 82 | + void test_huge_exp() |
| 83 | + { |
| 84 | + std::transform(huge_exp_input.cbegin(), huge_exp_input.cend(), expected.begin(), |
| 85 | + [](const value_type& v) { using std::exp; return exp(v); }); |
| 86 | + batch_type in, out; |
| 87 | + for (size_t i = 0; i < nb_input; i += size) |
| 88 | + { |
| 89 | + detail::load_batch(in, huge_exp_input, i); |
| 90 | + out = exp(in); |
| 91 | + detail::store_batch(out, res, i); |
| 92 | + } |
| 93 | + size_t diff = detail::get_nb_diff(res, expected); |
| 94 | + EXPECT_EQ(diff, 0) << print_function_name("huge exp"); |
| 95 | + } |
| 96 | + |
| 97 | + void test_log() |
| 98 | + { |
| 99 | + std::transform(log_input.cbegin(), log_input.cend(), expected.begin(), |
| 100 | + [](const value_type& v) { using std::log; return log(v); }); |
| 101 | + batch_type in, out; |
| 102 | + for (size_t i = 0; i < nb_input; i += size) |
| 103 | + { |
| 104 | + detail::load_batch(in, log_input, i); |
| 105 | + out = log(in); |
| 106 | + detail::store_batch(out, res, i); |
| 107 | + } |
| 108 | + size_t diff = detail::get_nb_diff(res, expected); |
| 109 | + EXPECT_EQ(diff, 0) << print_function_name("log"); |
| 110 | + } |
| 111 | + |
| 112 | + void test_log2() |
| 113 | + { |
| 114 | + std::transform(log_input.cbegin(), log_input.cend(), expected.begin(), |
| 115 | + [](const value_type& v) { using xsimd::log2; return log2(v); }); |
| 116 | + batch_type in, out; |
| 117 | + for (size_t i = 0; i < nb_input; i += size) |
| 118 | + { |
| 119 | + detail::load_batch(in, log_input, i); |
| 120 | + out = log2(in); |
| 121 | + detail::store_batch(out, res, i); |
| 122 | + } |
| 123 | + size_t diff = detail::get_nb_diff(res, expected); |
| 124 | + EXPECT_EQ(diff, 0) << print_function_name("log2"); |
| 125 | + } |
| 126 | + |
| 127 | + void test_log10() |
| 128 | + { |
| 129 | + std::transform(log_input.cbegin(), log_input.cend(), expected.begin(), |
| 130 | + [](const value_type& v) { using std::log10; return log10(v); }); |
| 131 | + batch_type in, out; |
| 132 | + for (size_t i = 0; i < nb_input; i += size) |
| 133 | + { |
| 134 | + detail::load_batch(in, log_input, i); |
| 135 | + out = log10(in); |
| 136 | + detail::store_batch(out, res, i); |
| 137 | + } |
| 138 | + size_t diff = detail::get_nb_diff(res, expected); |
| 139 | + EXPECT_EQ(diff, 0) << print_function_name("log10"); |
| 140 | + } |
| 141 | + |
| 142 | + void test_log1p() |
| 143 | + { |
| 144 | + std::transform(log_input.cbegin(), log_input.cend(), expected.begin(), |
| 145 | + [](const value_type& v) { using xsimd::log1p; return log1p(v); }); |
| 146 | + batch_type in, out; |
| 147 | + for (size_t i = 0; i < nb_input; i += size) |
| 148 | + { |
| 149 | + detail::load_batch(in, log_input, i); |
| 150 | + out = log1p(in); |
| 151 | + detail::store_batch(out, res, i); |
| 152 | + } |
| 153 | + size_t diff = detail::get_nb_diff(res, expected); |
| 154 | + EXPECT_EQ(diff, 0) << print_function_name("log1p"); |
| 155 | + } |
| 156 | + |
| 157 | + void test_sign() |
| 158 | + { |
| 159 | + std::transform(log_input.cbegin(), log_input.cend(), expected.begin(), |
| 160 | + [](const value_type& v) { using xsimd::sign; return sign(v); }); |
| 161 | + batch_type in, out; |
| 162 | + for (size_t i = 0; i < nb_input; i += size) |
| 163 | + { |
| 164 | + detail::load_batch(in, log_input, i); |
| 165 | + out = sign(in); |
| 166 | + detail::store_batch(out, res, i); |
| 167 | + } |
| 168 | + size_t diff = detail::get_nb_diff(res, expected); |
| 169 | + EXPECT_EQ(diff, 0) << print_function_name("sign"); |
| 170 | + } |
| 171 | +}; |
| 172 | + |
| 173 | +TYPED_TEST_SUITE(complex_exponential_test, batch_complex_types, simd_test_names); |
| 174 | + |
| 175 | +TYPED_TEST(complex_exponential_test, exp) |
| 176 | +{ |
| 177 | + this->test_exp(); |
| 178 | +} |
| 179 | + |
| 180 | +TYPED_TEST(complex_exponential_test, expm1) |
| 181 | +{ |
| 182 | + this->test_expm1(); |
| 183 | +} |
| 184 | + |
| 185 | +TYPED_TEST(complex_exponential_test, huge_exp) |
| 186 | +{ |
| 187 | + this->test_huge_exp(); |
| 188 | +} |
| 189 | + |
| 190 | +TYPED_TEST(complex_exponential_test, log) |
| 191 | +{ |
| 192 | + this->test_log(); |
| 193 | +} |
| 194 | + |
| 195 | +TYPED_TEST(complex_exponential_test, log2) |
| 196 | +{ |
| 197 | + this->test_log2(); |
| 198 | +} |
| 199 | + |
| 200 | +TYPED_TEST(complex_exponential_test, log10) |
| 201 | +{ |
| 202 | + this->test_log10(); |
| 203 | +} |
| 204 | + |
| 205 | +TYPED_TEST(complex_exponential_test, log1p) |
| 206 | +{ |
| 207 | + this->test_log1p(); |
| 208 | +} |
| 209 | + |
| 210 | +TYPED_TEST(complex_exponential_test, sign) |
| 211 | +{ |
| 212 | + this->test_sign(); |
| 213 | +} |
| 214 | + |
0 commit comments