Skip to content

Commit 2134791

Browse files
authored
Merge pull request #530 from yahoo/leewyang_pipeline
fix pipeline example; delete commented test
2 parents eb8cfb2 + c8e2fee commit 2134791

File tree

2 files changed

+3
-79
lines changed

2 files changed

+3
-79
lines changed

examples/mnist/estimator/mnist_pipeline.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -57,8 +57,8 @@ def scale(image, label):
5757
return ds.map(scale).batch(BATCH_SIZE)
5858

5959
def serving_input_receiver_fn():
60-
features = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1], name='features')
61-
receiver_tensors = {'features': features}
60+
features = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1], name='conv2d_input')
61+
receiver_tensors = {'conv2d_input': features}
6262
return tf.estimator.export.ServingInputReceiver(receiver_tensors, receiver_tensors)
6363

6464
def model_fn(features, labels, mode):
@@ -179,7 +179,7 @@ def parse(ln):
179179
else: # args.mode == 'inference':
180180
# using a trained/exported model
181181
model = TFModel(args) \
182-
.setInputMapping({'image': 'features'}) \
182+
.setInputMapping({'image': 'conv2d_input'}) \
183183
.setOutputMapping({'logits': 'prediction'}) \
184184
.setSignatureDefKey('serving_default') \
185185
.setExportDir(args.export_dir) \

test/test_pipeline.py

Lines changed: 0 additions & 76 deletions
Original file line numberDiff line numberDiff line change
@@ -171,82 +171,6 @@ def rdd_generator():
171171
expected = np.sum(self.weights)
172172
self.assertAlmostEqual(pred, expected, 2)
173173

174-
# def test_spark_sparse_tensor(self):
175-
# """InputMode.SPARK feeding sparse tensors"""
176-
# def sparse_train(args, ctx):
177-
# import tensorflow as tf
178-
#
179-
# # reset graph in case we're re-using a Spark python worker (during tests)
180-
# tf.compat.v1.reset_default_graph()
181-
#
182-
# cluster, server = ctx.start_cluster_server(ctx)
183-
# if ctx.job_name == "ps":
184-
# server.join()
185-
# elif ctx.job_name == "worker":
186-
# with tf.device(tf.compat.v1.train.replica_device_setter(
187-
# worker_device="/job:worker/task:%d" % ctx.task_index,
188-
# cluster=cluster)):
189-
# y_ = tf.compat.v1.placeholder(tf.float32, name='y_label')
190-
# label = tf.identity(y_, name='label')
191-
#
192-
# row_indices = tf.compat.v1.placeholder(tf.int64, name='x_row_indices')
193-
# col_indices = tf.compat.v1.placeholder(tf.int64, name='x_col_indices')
194-
# values = tf.compat.v1.placeholder(tf.float32, name='x_values')
195-
# indices = tf.stack([row_indices[0], col_indices[0]], axis=1)
196-
# data = values[0]
197-
#
198-
# x = tf.SparseTensor(indices=indices, values=data, dense_shape=[args.batch_size, 10])
199-
# w = tf.Variable(tf.random.truncated_normal([10, 1]), name='w')
200-
# y = tf.sparse.sparse_dense_matmul(x, w, name='y')
201-
#
202-
# global_step = tf.compat.v1.train.get_or_create_global_step()
203-
# cost = tf.reduce_mean(input_tensor=tf.square(y_ - y), name='cost')
204-
# optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1).minimize(cost, global_step)
205-
#
206-
# with tf.compat.v1.train.MonitoredTrainingSession(master=server.target,
207-
# is_chief=(ctx.task_index == 0),
208-
# checkpoint_dir=args.model_dir,
209-
# save_checkpoint_steps=20) as sess:
210-
# tf_feed = ctx.get_data_feed(input_mapping=args.input_mapping)
211-
# while not sess.should_stop() and not tf_feed.should_stop():
212-
# batch = tf_feed.next_batch(args.batch_size)
213-
# if len(batch) > 0:
214-
# print("batch: {}".format(batch))
215-
# feed = {y_: batch['y_label'],
216-
# row_indices: batch['x_row_indices'],
217-
# col_indices: batch['x_col_indices'],
218-
# values: batch['x_values']}
219-
# _, pred, trained_weights = sess.run([optimizer, y, w], feed_dict=feed)
220-
# print("trained_weights: {}".format(trained_weights))
221-
# sess.close()
222-
#
223-
# # wait for MonitoredTrainingSession to save last checkpoint
224-
# time.sleep(10)
225-
#
226-
# args = {}
227-
# estimator = TFEstimator(sparse_train, args) \
228-
# .setInputMapping({'labels': 'y_label', 'row_indices': 'x_row_indices', 'col_indices': 'x_col_indices', 'values': 'x_values'}) \
229-
# .setInputMode(TFCluster.InputMode.SPARK) \
230-
# .setModelDir(self.model_dir) \
231-
# .setClusterSize(self.num_workers) \
232-
# .setNumPS(1) \
233-
# .setBatchSize(1)
234-
#
235-
# model_weights = np.array([[1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0]]).T
236-
# examples = [scipy.sparse.random(1, 10, density=0.5,) for i in range(200)]
237-
# rdd = self.sc.parallelize(examples).map(lambda e: ((e * model_weights).tolist()[0][0], e.row.tolist(), e.col.tolist(), e.data.tolist()))
238-
# df = rdd.toDF(["labels", "row_indices", "col_indices", "values"])
239-
# df.show(5)
240-
# model = estimator.fit(df)
241-
#
242-
# model.setOutputMapping({'label': 'label', 'y/SparseTensorDenseMatMul': 'predictions'})
243-
# test_examples = [scipy.sparse.random(1, 10, density=0.5,) for i in range(50)]
244-
# test_rdd = self.sc.parallelize(test_examples).map(lambda e: ((e * model_weights).tolist()[0][0], e.row.tolist(), e.col.tolist(), e.data.tolist()))
245-
# test_df = test_rdd.toDF(["labels", "row_indices", "col_indices", "values"])
246-
# test_df.show(5)
247-
# preds = model.transform(test_df)
248-
# preds.show(5)
249-
250174

251175
if __name__ == '__main__':
252176
unittest.main()

0 commit comments

Comments
 (0)