Skip to content

Commit 2f8c61d

Browse files
authored
Update README.md
1 parent ecca71e commit 2f8c61d

File tree

1 file changed

+106
-1
lines changed

1 file changed

+106
-1
lines changed
Lines changed: 106 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,106 @@
1-
hello
1+
# YOLOv4 + Deep_SORT
2+
3+
<img src="https://github.com/yehengchen/video_demo/blob/master/video_demo/output.gif" width="40%" height="40%"> <img src="https://github.com/yehengchen/video_demo/blob/master/video_demo/TownCentreXVID_output.gif" width="40%" height="40%">
4+
<img src="https://github.com/yehengchen/Object-Detection-and-Tracking/blob/master/OneStage/yolo/yolo_img/output_person_315_1120_s.gif" width="40%" height="40%"> <img src="https://github.com/yehengchen/Object-Detection-and-Tracking/blob/master/img/output_car_143.gif" width="40%" height="40%">
5+
6+
__Object Tracking & Counting Demo - [[YouTube]](https://www.youtube.com/watch?v=ALw3OfrGWGo) [[BiliBili_V1]](https://www.bilibili.com/video/av55778717) [[BiliBili_V2]](https://www.bilibili.com/video/av59547404) [[Chinese Version]](https://blog.csdn.net/weixin_38107271/article/details/96741706)__
7+
## Requirement
8+
__Development Environment: [Deep-Learning-Environment-Setup](https://github.com/yehengchen/Ubuntu-16.04-Deep-Learning-Environment-Setup)__
9+
10+
* OpenCV
11+
* sklean
12+
* pillow
13+
* numpy 1.15.0
14+
* tensorflow-gpu 1.13.1
15+
* CUDA 10.0
16+
***
17+
18+
It uses:
19+
20+
* __Detection__: [YOLOv4](https://github.com/yehengchen/ObjectDetection/tree/master/OneStage/yolo/yolov3) to detect objects on each of the video frames. - 用自己的数据训练YOLOv3模型
21+
22+
* __Tracking__: [Deep_SORT](https://github.com/nwojke/deep_sort) to track those objects over different frames.
23+
24+
*This repository contains code for Simple Online and Realtime Tracking with a Deep Association Metric (Deep SORT). We extend the original SORT algorithm to integrate appearance information based on a deep appearance descriptor. See the [arXiv preprint](https://arxiv.org/abs/1703.07402) for more information.*
25+
26+
## Quick Start
27+
28+
__0.Requirements__
29+
30+
pip install -r requirements.txt
31+
32+
__1. Download the code to your computer.__
33+
34+
git clone https://github.com/yehengchen/Object-Detection-and-Tracking.git
35+
36+
__2. Download [[yolov4.weights]](https://pjreddie.com/media/files/yolov3.weights)__ and place it in `deep_sort_yolov3/model_data/`
37+
38+
*Here you can download my trained [[yolo-spp.h5]](https://pan.baidu.com/s/1DoiifwXrss1QgSQBp2vv8w&shfl=shareset) - `t13k` weights for detecting person/car/bicycle,etc.*
39+
40+
__3. Convert the Darknet YOLO model to a Keras model:__
41+
```
42+
$ python convert.py model_data/yolov3.cfg model_data/yolov3.weights model_data/yolo.h5
43+
```
44+
__4. Run the YOLO_DEEP_SORT:__
45+
46+
```
47+
$ python main.py -c [CLASS NAME] -i [INPUT VIDEO PATH]
48+
49+
$ python main.py -c person -i ./test_video/testvideo.avi
50+
```
51+
52+
__5. Can change [deep_sort_yolov3/yolo.py] `__Line 100__` to your tracking object__
53+
54+
*DeepSORT pre-trained weights using people-ReID datasets only for person*
55+
```
56+
if predicted_class != args["class"]:
57+
continue
58+
59+
if predicted_class != 'person' and predicted_class != 'car':
60+
continue
61+
```
62+
63+
## Train on Market1501 & MARS
64+
*People Re-identification model*
65+
66+
[cosine_metric_learning](https://github.com/nwojke/cosine_metric_learning) for training a metric feature representation to be used with the deep_sort tracker.
67+
68+
## Citation
69+
70+
### YOLOv3 :
71+
72+
@article{yolov3,
73+
title={YOLOv3: An Incremental Improvement},
74+
author={Redmon, Joseph and Farhadi, Ali},
75+
journal = {arXiv},
76+
year={2018}
77+
}
78+
79+
### Deep_SORT :
80+
81+
@inproceedings{Wojke2017simple,
82+
title={Simple Online and Realtime Tracking with a Deep Association Metric},
83+
author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
84+
booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
85+
year={2017},
86+
pages={3645--3649},
87+
organization={IEEE},
88+
doi={10.1109/ICIP.2017.8296962}
89+
}
90+
91+
@inproceedings{Wojke2018deep,
92+
title={Deep Cosine Metric Learning for Person Re-identification},
93+
author={Wojke, Nicolai and Bewley, Alex},
94+
booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
95+
year={2018},
96+
pages={748--756},
97+
organization={IEEE},
98+
doi={10.1109/WACV.2018.00087}
99+
}
100+
101+
## Reference
102+
#### Github:deep_sort@[Nicolai Wojke nwojke](https://github.com/nwojke/deep_sort)
103+
#### Github:deep_sort_yolov3@[Qidian213 ](https://github.com/Qidian213/deep_sort_yolov3)
104+
105+
106+

0 commit comments

Comments
 (0)