|
| 1 | +/* |
| 2 | +Copyright 2024 The Kubernetes Authors. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +*/ |
| 16 | + |
| 17 | +package node |
| 18 | + |
| 19 | +import ( |
| 20 | + "context" |
| 21 | + v1 "k8s.io/api/core/v1" |
| 22 | + "k8s.io/apimachinery/pkg/api/resource" |
| 23 | + metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" |
| 24 | + "k8s.io/apimachinery/pkg/util/uuid" |
| 25 | + clientset "k8s.io/client-go/kubernetes" |
| 26 | + "k8s.io/kubernetes/test/e2e/feature" |
| 27 | + "k8s.io/kubernetes/test/e2e/framework" |
| 28 | + e2egpu "k8s.io/kubernetes/test/e2e/framework/gpu" |
| 29 | + e2enode "k8s.io/kubernetes/test/e2e/framework/node" |
| 30 | + e2epod "k8s.io/kubernetes/test/e2e/framework/pod" |
| 31 | + e2eskipper "k8s.io/kubernetes/test/e2e/framework/skipper" |
| 32 | + admissionapi "k8s.io/pod-security-admission/api" |
| 33 | + |
| 34 | + "github.com/onsi/ginkgo/v2" |
| 35 | + "github.com/onsi/gomega" |
| 36 | +) |
| 37 | + |
| 38 | +var _ = SIGDescribe(feature.GPUDevicePlugin, "Sanity test for Nvidia Device", func() { |
| 39 | + |
| 40 | + f := framework.NewDefaultFramework("nvidia-gpu") |
| 41 | + f.NamespacePodSecurityLevel = admissionapi.LevelPrivileged |
| 42 | + var podClient *e2epod.PodClient |
| 43 | + |
| 44 | + ginkgo.BeforeEach(func() { |
| 45 | + e2eskipper.SkipUnlessProviderIs("aws") |
| 46 | + podClient = e2epod.NewPodClient(f) |
| 47 | + }) |
| 48 | + |
| 49 | + f.It("should run nvidia-smi cli", func(ctx context.Context) { |
| 50 | + checkEnvironmentAndSkipIfNeeded(ctx, f.ClientSet) |
| 51 | + pod := testNvidiaCLIPod() |
| 52 | + pod.Spec.Containers[0].Command = []string{"nvidia-smi"} |
| 53 | + |
| 54 | + ginkgo.By("Creating a pod that runs nvidia-smi") |
| 55 | + createAndValidatePod(ctx, f, podClient, pod) |
| 56 | + |
| 57 | + ginkgo.By("Getting logs from the pod") |
| 58 | + log, err := e2epod.GetPodLogs(ctx, f.ClientSet, f.Namespace.Name, pod.Name, pod.Spec.Containers[0].Name) |
| 59 | + framework.ExpectNoError(err) |
| 60 | + |
| 61 | + ginkgo.By("Checking output from nvidia-smi") |
| 62 | + gomega.Expect(log).To(gomega.ContainSubstring("NVIDIA-SMI")) |
| 63 | + gomega.Expect(log).To(gomega.ContainSubstring("Driver Version:")) |
| 64 | + gomega.Expect(log).To(gomega.ContainSubstring("CUDA Version:")) |
| 65 | + }) |
| 66 | + |
| 67 | + f.It("should run gpu based matrix multiplication", func(ctx context.Context) { |
| 68 | + checkEnvironmentAndSkipIfNeeded(ctx, f.ClientSet) |
| 69 | + pod := testMatrixMultiplicationPod() |
| 70 | + |
| 71 | + ginkgo.By("Creating a pod that runs matrix multiplication") |
| 72 | + createAndValidatePod(ctx, f, podClient, pod) |
| 73 | + |
| 74 | + ginkgo.By("Getting logs from the pod") |
| 75 | + log, err := e2epod.GetPodLogs(ctx, f.ClientSet, f.Namespace.Name, pod.Name, pod.Spec.Containers[0].Name) |
| 76 | + framework.ExpectNoError(err) |
| 77 | + |
| 78 | + ginkgo.By("Checking output from nvidia-smi") |
| 79 | + gomega.Expect(log).To(gomega.ContainSubstring("TensorFlow version")) |
| 80 | + gomega.Expect(log).To(gomega.ContainSubstring("Matrix multiplication result:")) |
| 81 | + gomega.Expect(log).To(gomega.ContainSubstring("Time taken for 5000x5000 matrix multiplication")) |
| 82 | + }) |
| 83 | +}) |
| 84 | + |
| 85 | +func createAndValidatePod(ctx context.Context, f *framework.Framework, podClient *e2epod.PodClient, pod *v1.Pod) { |
| 86 | + pod = podClient.Create(ctx, pod) |
| 87 | + |
| 88 | + ginkgo.By("Watching for error events or started pod") |
| 89 | + ev, err := podClient.WaitForErrorEventOrSuccess(ctx, pod) |
| 90 | + framework.ExpectNoError(err) |
| 91 | + gomega.Expect(ev).To(gomega.BeNil()) |
| 92 | + |
| 93 | + ginkgo.By("Waiting for pod completion") |
| 94 | + err = e2epod.WaitForPodNoLongerRunningInNamespace(ctx, f.ClientSet, pod.Name, f.Namespace.Name) |
| 95 | + framework.ExpectNoError(err) |
| 96 | + pod, err = podClient.Get(ctx, pod.Name, metav1.GetOptions{}) |
| 97 | + framework.ExpectNoError(err) |
| 98 | + |
| 99 | + ginkgo.By("Checking that the pod succeeded") |
| 100 | + gomega.Expect(pod.Status.Phase).To(gomega.Equal(v1.PodSucceeded)) |
| 101 | +} |
| 102 | + |
| 103 | +func testNvidiaCLIPod() *v1.Pod { |
| 104 | + podName := "gpu-cli-" + string(uuid.NewUUID()) |
| 105 | + pod := v1.Pod{ |
| 106 | + ObjectMeta: metav1.ObjectMeta{ |
| 107 | + Name: podName, |
| 108 | + Annotations: map[string]string{}, |
| 109 | + }, |
| 110 | + Spec: v1.PodSpec{ |
| 111 | + Containers: []v1.Container{ |
| 112 | + { |
| 113 | + Name: "nvidia-smi", |
| 114 | + Image: "nvidia/cuda:12.3.2-runtime-ubuntu22.04", |
| 115 | + Resources: v1.ResourceRequirements{ |
| 116 | + Limits: v1.ResourceList{ |
| 117 | + "nvidia.com/gpu": resource.MustParse("1"), |
| 118 | + }, |
| 119 | + }, |
| 120 | + }, |
| 121 | + }, |
| 122 | + RestartPolicy: v1.RestartPolicyNever, |
| 123 | + }, |
| 124 | + } |
| 125 | + return &pod |
| 126 | +} |
| 127 | + |
| 128 | +func testMatrixMultiplicationPod() *v1.Pod { |
| 129 | + podName := "gpu-matmul-" + string(uuid.NewUUID()) |
| 130 | + pod := v1.Pod{ |
| 131 | + ObjectMeta: metav1.ObjectMeta{ |
| 132 | + Name: podName, |
| 133 | + Annotations: map[string]string{}, |
| 134 | + }, |
| 135 | + Spec: v1.PodSpec{ |
| 136 | + Containers: []v1.Container{ |
| 137 | + { |
| 138 | + Name: "gpu-matmul", |
| 139 | + Image: "tensorflow/tensorflow:latest-gpu", |
| 140 | + Command: []string{ |
| 141 | + "python", |
| 142 | + "-c", |
| 143 | + ` |
| 144 | +import tensorflow as tf |
| 145 | +import time |
| 146 | +
|
| 147 | +print("TensorFlow version:", tf.__version__) |
| 148 | +print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) |
| 149 | +
|
| 150 | +# Simple matrix multiplication test |
| 151 | +with tf.device('/GPU:0'): |
| 152 | + a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) |
| 153 | + b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) |
| 154 | + c = tf.matmul(a, b) |
| 155 | +
|
| 156 | +print("Matrix multiplication result:", c.numpy()) |
| 157 | +
|
| 158 | +# Performance test |
| 159 | +n = 5000 |
| 160 | +start_time = time.time() |
| 161 | +with tf.device('/GPU:0'): |
| 162 | + matrix1 = tf.random.normal((n, n)) |
| 163 | + matrix2 = tf.random.normal((n, n)) |
| 164 | + result = tf.matmul(matrix1, matrix2) |
| 165 | +end_time = time.time() |
| 166 | +
|
| 167 | +print(f"Time taken for {n}x{n} matrix multiplication: {end_time - start_time:.2f} seconds") |
| 168 | +`, |
| 169 | + }, |
| 170 | + Resources: v1.ResourceRequirements{ |
| 171 | + Limits: v1.ResourceList{ |
| 172 | + "nvidia.com/gpu": resource.MustParse("1"), |
| 173 | + }, |
| 174 | + }, |
| 175 | + }, |
| 176 | + }, |
| 177 | + RestartPolicy: v1.RestartPolicyNever, |
| 178 | + }, |
| 179 | + } |
| 180 | + return &pod |
| 181 | +} |
| 182 | + |
| 183 | +func checkEnvironmentAndSkipIfNeeded(ctx context.Context, clientSet clientset.Interface) { |
| 184 | + nodes, err := e2enode.GetReadySchedulableNodes(ctx, clientSet) |
| 185 | + framework.ExpectNoError(err) |
| 186 | + capacity := 0 |
| 187 | + allocatable := 0 |
| 188 | + for _, node := range nodes.Items { |
| 189 | + val, ok := node.Status.Capacity[e2egpu.NVIDIAGPUResourceName] |
| 190 | + if !ok { |
| 191 | + continue |
| 192 | + } |
| 193 | + capacity += int(val.Value()) |
| 194 | + val, ok = node.Status.Allocatable[e2egpu.NVIDIAGPUResourceName] |
| 195 | + if !ok { |
| 196 | + continue |
| 197 | + } |
| 198 | + allocatable += int(val.Value()) |
| 199 | + } |
| 200 | + if capacity == 0 { |
| 201 | + e2eskipper.Skipf("%d ready nodes do not have any Nvidia GPU(s). Skipping...", len(nodes.Items)) |
| 202 | + } |
| 203 | + if allocatable == 0 { |
| 204 | + e2eskipper.Skipf("%d ready nodes do not have any allocatable Nvidia GPU(s). Skipping...", len(nodes.Items)) |
| 205 | + } |
| 206 | +} |
0 commit comments