@@ -151,6 +151,15 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
151
151
@ com .google .api .client .util .Key
152
152
private java .lang .Double colsampleBytree ;
153
153
154
+ /**
155
+ * The contribution metric. Applies to contribution analysis models. Allowed formats supported are
156
+ * for summable and summable ratio contribution metrics. These include expressions such as
157
+ * "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table.
158
+ * The value may be {@code null}.
159
+ */
160
+ @ com .google .api .client .util .Key
161
+ private java .lang .String contributionMetric ;
162
+
154
163
/**
155
164
* Type of normalization algorithm for boosted tree models using dart booster.
156
165
* The value may be {@code null}.
@@ -201,6 +210,13 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
201
210
@ com .google .api .client .util .Key
202
211
private java .lang .Boolean decomposeTimeSeries ;
203
212
213
+ /**
214
+ * Optional. Names of the columns to slice on. Applies to contribution analysis models.
215
+ * The value may be {@code null}.
216
+ */
217
+ @ com .google .api .client .util .Key
218
+ private java .util .List <java .lang .String > dimensionIdColumns ;
219
+
204
220
/**
205
221
* Distance type for clustering models.
206
222
* The value may be {@code null}.
@@ -315,6 +331,14 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
315
331
@ com .google .api .client .util .Key @ com .google .api .client .json .JsonString
316
332
private java .lang .Long integratedGradientsNumSteps ;
317
333
334
+ /**
335
+ * Name of the column used to determine the rows corresponding to control and test. Applies to
336
+ * contribution analysis models.
337
+ * The value may be {@code null}.
338
+ */
339
+ @ com .google .api .client .util .Key
340
+ private java .lang .String isTestColumn ;
341
+
318
342
/**
319
343
* Item column specified for matrix factorization models.
320
344
* The value may be {@code null}.
@@ -417,6 +441,13 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
417
441
@ com .google .api .client .util .Key @ com .google .api .client .json .JsonString
418
442
private java .lang .Long maxTreeDepth ;
419
443
444
+ /**
445
+ * The apriori support minimum. Applies to contribution analysis models.
446
+ * The value may be {@code null}.
447
+ */
448
+ @ com .google .api .client .util .Key
449
+ private java .lang .Double minAprioriSupport ;
450
+
420
451
/**
421
452
* When early_stop is true, stops training when accuracy improvement is less than
422
453
* 'min_relative_progress'. Used only for iterative training algorithms.
@@ -963,6 +994,27 @@ public TrainingOptions setColsampleBytree(java.lang.Double colsampleBytree) {
963
994
return this ;
964
995
}
965
996
997
+ /**
998
+ * The contribution metric. Applies to contribution analysis models. Allowed formats supported are
999
+ * for summable and summable ratio contribution metrics. These include expressions such as
1000
+ * "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table.
1001
+ * @return value or {@code null} for none
1002
+ */
1003
+ public java .lang .String getContributionMetric () {
1004
+ return contributionMetric ;
1005
+ }
1006
+
1007
+ /**
1008
+ * The contribution metric. Applies to contribution analysis models. Allowed formats supported are
1009
+ * for summable and summable ratio contribution metrics. These include expressions such as
1010
+ * "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table.
1011
+ * @param contributionMetric contributionMetric or {@code null} for none
1012
+ */
1013
+ public TrainingOptions setContributionMetric (java .lang .String contributionMetric ) {
1014
+ this .contributionMetric = contributionMetric ;
1015
+ return this ;
1016
+ }
1017
+
966
1018
/**
967
1019
* Type of normalization algorithm for boosted tree models using dart booster.
968
1020
* @return value or {@code null} for none
@@ -1081,6 +1133,23 @@ public TrainingOptions setDecomposeTimeSeries(java.lang.Boolean decomposeTimeSer
1081
1133
return this ;
1082
1134
}
1083
1135
1136
+ /**
1137
+ * Optional. Names of the columns to slice on. Applies to contribution analysis models.
1138
+ * @return value or {@code null} for none
1139
+ */
1140
+ public java .util .List <java .lang .String > getDimensionIdColumns () {
1141
+ return dimensionIdColumns ;
1142
+ }
1143
+
1144
+ /**
1145
+ * Optional. Names of the columns to slice on. Applies to contribution analysis models.
1146
+ * @param dimensionIdColumns dimensionIdColumns or {@code null} for none
1147
+ */
1148
+ public TrainingOptions setDimensionIdColumns (java .util .List <java .lang .String > dimensionIdColumns ) {
1149
+ this .dimensionIdColumns = dimensionIdColumns ;
1150
+ return this ;
1151
+ }
1152
+
1084
1153
/**
1085
1154
* Distance type for clustering models.
1086
1155
* @return value or {@code null} for none
@@ -1357,6 +1426,25 @@ public TrainingOptions setIntegratedGradientsNumSteps(java.lang.Long integratedG
1357
1426
return this ;
1358
1427
}
1359
1428
1429
+ /**
1430
+ * Name of the column used to determine the rows corresponding to control and test. Applies to
1431
+ * contribution analysis models.
1432
+ * @return value or {@code null} for none
1433
+ */
1434
+ public java .lang .String getIsTestColumn () {
1435
+ return isTestColumn ;
1436
+ }
1437
+
1438
+ /**
1439
+ * Name of the column used to determine the rows corresponding to control and test. Applies to
1440
+ * contribution analysis models.
1441
+ * @param isTestColumn isTestColumn or {@code null} for none
1442
+ */
1443
+ public TrainingOptions setIsTestColumn (java .lang .String isTestColumn ) {
1444
+ this .isTestColumn = isTestColumn ;
1445
+ return this ;
1446
+ }
1447
+
1360
1448
/**
1361
1449
* Item column specified for matrix factorization models.
1362
1450
* @return value or {@code null} for none
@@ -1603,6 +1691,23 @@ public TrainingOptions setMaxTreeDepth(java.lang.Long maxTreeDepth) {
1603
1691
return this ;
1604
1692
}
1605
1693
1694
+ /**
1695
+ * The apriori support minimum. Applies to contribution analysis models.
1696
+ * @return value or {@code null} for none
1697
+ */
1698
+ public java .lang .Double getMinAprioriSupport () {
1699
+ return minAprioriSupport ;
1700
+ }
1701
+
1702
+ /**
1703
+ * The apriori support minimum. Applies to contribution analysis models.
1704
+ * @param minAprioriSupport minAprioriSupport or {@code null} for none
1705
+ */
1706
+ public TrainingOptions setMinAprioriSupport (java .lang .Double minAprioriSupport ) {
1707
+ this .minAprioriSupport = minAprioriSupport ;
1708
+ return this ;
1709
+ }
1710
+
1606
1711
/**
1607
1712
* When early_stop is true, stops training when accuracy improvement is less than
1608
1713
* 'min_relative_progress'. Used only for iterative training algorithms.
0 commit comments