@@ -151,6 +151,15 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
151151 @ com .google .api .client .util .Key
152152 private java .lang .Double colsampleBytree ;
153153
154+ /**
155+ * The contribution metric. Applies to contribution analysis models. Allowed formats supported are
156+ * for summable and summable ratio contribution metrics. These include expressions such as
157+ * "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table.
158+ * The value may be {@code null}.
159+ */
160+ @ com .google .api .client .util .Key
161+ private java .lang .String contributionMetric ;
162+
154163 /**
155164 * Type of normalization algorithm for boosted tree models using dart booster.
156165 * The value may be {@code null}.
@@ -201,6 +210,13 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
201210 @ com .google .api .client .util .Key
202211 private java .lang .Boolean decomposeTimeSeries ;
203212
213+ /**
214+ * Optional. Names of the columns to slice on. Applies to contribution analysis models.
215+ * The value may be {@code null}.
216+ */
217+ @ com .google .api .client .util .Key
218+ private java .util .List <java .lang .String > dimensionIdColumns ;
219+
204220 /**
205221 * Distance type for clustering models.
206222 * The value may be {@code null}.
@@ -315,6 +331,14 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
315331 @ com .google .api .client .util .Key @ com .google .api .client .json .JsonString
316332 private java .lang .Long integratedGradientsNumSteps ;
317333
334+ /**
335+ * Name of the column used to determine the rows corresponding to control and test. Applies to
336+ * contribution analysis models.
337+ * The value may be {@code null}.
338+ */
339+ @ com .google .api .client .util .Key
340+ private java .lang .String isTestColumn ;
341+
318342 /**
319343 * Item column specified for matrix factorization models.
320344 * The value may be {@code null}.
@@ -417,6 +441,13 @@ public final class TrainingOptions extends com.google.api.client.json.GenericJso
417441 @ com .google .api .client .util .Key @ com .google .api .client .json .JsonString
418442 private java .lang .Long maxTreeDepth ;
419443
444+ /**
445+ * The apriori support minimum. Applies to contribution analysis models.
446+ * The value may be {@code null}.
447+ */
448+ @ com .google .api .client .util .Key
449+ private java .lang .Double minAprioriSupport ;
450+
420451 /**
421452 * When early_stop is true, stops training when accuracy improvement is less than
422453 * 'min_relative_progress'. Used only for iterative training algorithms.
@@ -963,6 +994,27 @@ public TrainingOptions setColsampleBytree(java.lang.Double colsampleBytree) {
963994 return this ;
964995 }
965996
997+ /**
998+ * The contribution metric. Applies to contribution analysis models. Allowed formats supported are
999+ * for summable and summable ratio contribution metrics. These include expressions such as
1000+ * "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table.
1001+ * @return value or {@code null} for none
1002+ */
1003+ public java .lang .String getContributionMetric () {
1004+ return contributionMetric ;
1005+ }
1006+
1007+ /**
1008+ * The contribution metric. Applies to contribution analysis models. Allowed formats supported are
1009+ * for summable and summable ratio contribution metrics. These include expressions such as
1010+ * "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table.
1011+ * @param contributionMetric contributionMetric or {@code null} for none
1012+ */
1013+ public TrainingOptions setContributionMetric (java .lang .String contributionMetric ) {
1014+ this .contributionMetric = contributionMetric ;
1015+ return this ;
1016+ }
1017+
9661018 /**
9671019 * Type of normalization algorithm for boosted tree models using dart booster.
9681020 * @return value or {@code null} for none
@@ -1081,6 +1133,23 @@ public TrainingOptions setDecomposeTimeSeries(java.lang.Boolean decomposeTimeSer
10811133 return this ;
10821134 }
10831135
1136+ /**
1137+ * Optional. Names of the columns to slice on. Applies to contribution analysis models.
1138+ * @return value or {@code null} for none
1139+ */
1140+ public java .util .List <java .lang .String > getDimensionIdColumns () {
1141+ return dimensionIdColumns ;
1142+ }
1143+
1144+ /**
1145+ * Optional. Names of the columns to slice on. Applies to contribution analysis models.
1146+ * @param dimensionIdColumns dimensionIdColumns or {@code null} for none
1147+ */
1148+ public TrainingOptions setDimensionIdColumns (java .util .List <java .lang .String > dimensionIdColumns ) {
1149+ this .dimensionIdColumns = dimensionIdColumns ;
1150+ return this ;
1151+ }
1152+
10841153 /**
10851154 * Distance type for clustering models.
10861155 * @return value or {@code null} for none
@@ -1357,6 +1426,25 @@ public TrainingOptions setIntegratedGradientsNumSteps(java.lang.Long integratedG
13571426 return this ;
13581427 }
13591428
1429+ /**
1430+ * Name of the column used to determine the rows corresponding to control and test. Applies to
1431+ * contribution analysis models.
1432+ * @return value or {@code null} for none
1433+ */
1434+ public java .lang .String getIsTestColumn () {
1435+ return isTestColumn ;
1436+ }
1437+
1438+ /**
1439+ * Name of the column used to determine the rows corresponding to control and test. Applies to
1440+ * contribution analysis models.
1441+ * @param isTestColumn isTestColumn or {@code null} for none
1442+ */
1443+ public TrainingOptions setIsTestColumn (java .lang .String isTestColumn ) {
1444+ this .isTestColumn = isTestColumn ;
1445+ return this ;
1446+ }
1447+
13601448 /**
13611449 * Item column specified for matrix factorization models.
13621450 * @return value or {@code null} for none
@@ -1603,6 +1691,23 @@ public TrainingOptions setMaxTreeDepth(java.lang.Long maxTreeDepth) {
16031691 return this ;
16041692 }
16051693
1694+ /**
1695+ * The apriori support minimum. Applies to contribution analysis models.
1696+ * @return value or {@code null} for none
1697+ */
1698+ public java .lang .Double getMinAprioriSupport () {
1699+ return minAprioriSupport ;
1700+ }
1701+
1702+ /**
1703+ * The apriori support minimum. Applies to contribution analysis models.
1704+ * @param minAprioriSupport minAprioriSupport or {@code null} for none
1705+ */
1706+ public TrainingOptions setMinAprioriSupport (java .lang .Double minAprioriSupport ) {
1707+ this .minAprioriSupport = minAprioriSupport ;
1708+ return this ;
1709+ }
1710+
16061711 /**
16071712 * When early_stop is true, stops training when accuracy improvement is less than
16081713 * 'min_relative_progress'. Used only for iterative training algorithms.
0 commit comments