|
19 | 19 | from sklearn.gaussian_process.kernels import RBF, ConstantKernel, DotProduct, WhiteKernel |
20 | 20 | from sklearn.ensemble import AdaBoostRegressor, ExtraTreesRegressor, RandomForestRegressor |
21 | 21 | from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, Lars, LassoLars, OrthogonalMatchingPursuit, BayesianRidge, ARDRegression, SGDRegressor, PassiveAggressiveRegressor, RANSACRegressor, HuberRegressor |
22 | | - |
| 22 | +from sklearn.ensemble import GradientBoostingRegressor |
23 | 23 |
|
24 | 24 | from hunga_bunga.core import * |
25 | 25 | from hunga_bunga.params import * |
|
271 | 271 | {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, |
272 | 272 | 'min_samples_leaf': min_samples_leaf, 'min_impurity_split': min_impurity_split, 'warm_start': warm_start, |
273 | 273 | 'criterion': ['mse', 'mae']}), |
| 274 | + |
| 275 | + (GradientBoostingRegressor, |
| 276 | + {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, |
| 277 | + 'min_samples_leaf': min_samples_leaf, 'min_impurity_split': min_impurity_split, 'warm_start': warm_start}), |
274 | 278 |
|
275 | 279 | ] |
276 | 280 |
|
|
282 | 286 | (ExtraTreesRegressor, |
283 | 287 | {'n_estimators': n_estimators_small, 'max_features': max_features_small, 'max_depth': max_depth_small, 'min_samples_split': min_samples_split, |
284 | 288 | 'min_samples_leaf': min_samples_leaf, |
285 | | - 'criterion': ['mse', 'mae']}) |
| 289 | + 'criterion': ['mse', 'mae']}), |
| 290 | + |
| 291 | + (GradientBoostingRegressor, |
| 292 | + {'n_estimators': n_estimators_small, 'max_features': max_features_small, 'max_depth': max_depth_small, 'min_samples_split': min_samples_split, |
| 293 | + 'min_samples_leaf': min_samples_leaf}) |
286 | 294 | ] |
287 | 295 |
|
288 | 296 |
|
|
0 commit comments