@@ -118,7 +118,7 @@ def test_dataloader_vitals(self):
118118 inps = torch .arange (10 * 5 , dtype = torch .float32 ).view (10 , 5 )
119119 tgts = torch .arange (10 * 5 , dtype = torch .float32 ).view (10 , 5 )
120120 dataset = torch .utils .data .TensorDataset (inps , tgts )
121- loader = torch .utils .data .DataLoader (dataset , batch_size = 2 )
121+ torch .utils .data .DataLoader (dataset , batch_size = 2 )
122122 self .assertIn ('Dataloader.enabled\t \t True' , torch .read_vitals ())
123123
124124# FIXME: document or deprecate whatever this is
@@ -392,7 +392,7 @@ def test_module_share_memory(self):
392392 # Test fix for issue #80733
393393 # See https://github.com/pytorch/pytorch/issues/80733
394394 model = torch .nn .Linear (3 , 1 )
395- model_cuda = model .to ('cuda' )
395+ _model_cuda = model .to ('cuda' )
396396 model .share_memory ()
397397
398398 @dtypes (torch .float32 , torch .complex64 )
@@ -644,8 +644,8 @@ def test_scalar_check(self, device):
644644 self .assertEqual ((1 ,), torch .masked_select (zero_d_bool , one_d_bool ).shape )
645645 self .assertEqual ((1 ,), torch .masked_select (one_d_bool , zero_d_bool ).shape )
646646
647- zero_d_uint8 = torch .tensor (1 , dtype = torch .uint8 , device = device )
648- one_d_uint8 = torch .tensor ([1 ], dtype = torch .uint8 , device = device )
647+ torch .tensor (1 , dtype = torch .uint8 , device = device )
648+ torch .tensor ([1 ], dtype = torch .uint8 , device = device )
649649
650650 # mode
651651 self .assertEqual ([(), ()], [x .shape for x in torch .mode (zero_d , dim = 0 , keepdim = True )])
@@ -955,7 +955,7 @@ def test_dtypetensor_warnings(self, device):
955955 t = torch .cuda .FloatTensor ([0 ])
956956
957957 with self .assertWarnsOnceRegex (UserWarning , msg ):
958- t = torch .cuda .DoubleTensor ([0 ])
958+ torch .cuda .DoubleTensor ([0 ])
959959
960960 def test_set_default_tensor_type_warnings (self , device ):
961961 msg = '.*is deprecated as of PyTorch 2.1, please use torch.set_default_dtype().*'
@@ -1007,7 +1007,7 @@ def test_conv_transposed_large(self, device):
10071007 stride = 2 , padding = 2 , output_padding = 1 ).to (device )
10081008
10091009 x = torch .rand ([1 , 64 , 8 , 128 , 172 ]).to (device )
1010- y = conv (x )
1010+ conv (x )
10111011
10121012 def test_is_set_to (self , device ):
10131013 t1 = torch .empty (3 , 4 , 9 , 10 , device = device )
@@ -1222,7 +1222,6 @@ def test_case_info(fn_name, config):
12221222 return f'function "{ fn_name } " with config "{ "" if config is None else config } "'
12231223
12241224 # Create processes to test each combination of test cases and config settings
1225- processes = []
12261225 for fn_name , arg_sizes in test_cases :
12271226 for config , is_config_deterministic in test_configs :
12281227 env = os .environ .copy ()
@@ -2614,7 +2613,6 @@ def test_cdist_same_inputs(self, device):
26142613 x = torch .randn (sizex , device = device , dtype = torch .float )
26152614 dist_grad = torch .randn ((1 , 27 , 27 ), device = device , dtype = torch .float )
26162615 y = x .clone ()
2617- eps = 1e-6
26182616 x .requires_grad = True
26192617 d = torch .cdist (x , y )
26202618 d .backward (dist_grad )
@@ -3172,7 +3170,7 @@ def test_copy_all_dtypes_and_devices(self, device):
31723170 from copy import copy
31733171 for dt in all_types_and_complex_and (torch .half , torch .bool , torch .bfloat16 ):
31743172 x = torch .tensor ([1 , 2 , 3 , 4 ], dtype = dt , device = device )
3175- x_clone = x .clone ()
3173+ _x_clone = x .clone ()
31763174 y = copy (x )
31773175 y .fill_ (1 )
31783176 # copy is a shallow copy, only copies the tensor view,
@@ -3994,10 +3992,6 @@ def test_masked_scatter_large_tensor(self, device):
39943992 # FIXME: find a test suite for the masked select operator
39953993 @dtypes (* all_types_and_complex_and (torch .half , torch .bool , torch .bfloat16 ))
39963994 def test_masked_select (self , device , dtype ):
3997- if device == 'cpu' :
3998- warn = 'masked_select received a mask with dtype torch.uint8,'
3999- else :
4000- warn = 'indexing with dtype torch.uint8 is now deprecated, pl'
40013995 for maskType in integral_types_and (torch .bool ):
40023996 num_src = 10
40033997 src = torch .tensor ([0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ], dtype = dtype , device = device )
@@ -4506,9 +4500,7 @@ def test_index_copy_mem_overlap(self, device):
45064500 @onlyNativeDeviceTypes
45074501 def test_index_fill_mem_overlap (self , device ):
45084502 x = torch .rand ((1 ,), device = device ).expand ((6 ,))
4509- y = torch .rand ((6 ,), device = device )
45104503 ind = torch .tensor ([2 , 1 , 0 ], device = device )
4511- value = torch .rand ((3 ,), device = device )
45124504
45134505 with self .assertWarnsRegex (UserWarning , "index_fill_ on expanded tensors" ):
45144506 x .index_fill_ (0 , ind , 1.0 )
@@ -4871,7 +4863,7 @@ def test_helper(x, memory_format):
48714863
48724864 sparse = x .to_sparse ()
48734865 with self .assertRaises (RuntimeError ):
4874- z = torch .empty_like (sparse , memory_format = torch .preserve_format )
4866+ torch .empty_like (sparse , memory_format = torch .preserve_format )
48754867
48764868 test_helper (torch .randn (4 , 3 , 8 , 8 , device = device ), torch .channels_last )
48774869 test_helper (torch .randn (4 , 3 , 8 , 8 , 8 , device = device ), torch .channels_last_3d )
@@ -5277,7 +5269,7 @@ def test_lazy_clone_view_materialize(self, device, dtype):
52775269 def test_lazy_clone_binary_op_no_materialize (self , device , dtype ):
52785270 t = torch .tensor ([[0 , 1 ], [2 , 3 ]], device = device , dtype = dtype )
52795271 clone = t ._lazy_clone ()
5280- res = t + clone
5272+ t + clone
52815273 self .assertTrue (torch ._C ._is_cow_tensor (t ))
52825274 self .assertTrue (torch ._C ._is_cow_tensor (clone ))
52835275
@@ -5404,7 +5396,6 @@ def make_prob_dist(shape, is_contiguous):
54045396 sample_indices = torch .multinomial (prob_dist , n_sample , True )
54055397 for sample_index in sample_indices :
54065398 self .assertNotEqual (sample_index , zero_prob_idx , msg = "sampled an index with zero probability" )
5407- s_dim = sample_indices .dim ()
54085399 self .assertEqual (sample_indices .dim (), 1 , msg = "wrong number of dimensions" )
54095400 self .assertEqual (prob_dist .dim (), 1 , msg = "wrong number of prob_dist dimensions" )
54105401 self .assertEqual (sample_indices .size (0 ), n_sample , msg = "wrong number of samples" )
@@ -6614,9 +6605,9 @@ def test_advancedindex_mixed_devices_error(self, devices) -> None:
66146605 def test (x : torch .Tensor , ia : torch .Tensor , ib : torch .Tensor ) -> None :
66156606 # test getitem
66166607 with self .assertRaisesRegex (RuntimeError , fr"indices should be either .* \({ x .device } \)" ):
6617- value = x [:, ia , None , ib , 0 ]
6608+ x [:, ia , None , ib , 0 ]
66186609 with self .assertRaisesRegex (RuntimeError , fr"indices should be either .* \({ x .device } \)" ):
6619- value = x [ib ]
6610+ x [ib ]
66206611
66216612 cpu = torch .device ('cpu' )
66226613 for device in devices :
@@ -7181,7 +7172,6 @@ def test_tensor_set_errors(self):
71817172 # NOTE: test_equal will be deprecated in favor of torch.testing.assert_close
71827173 # once torch.testing is out of beta
71837174 def test_equal (self ):
7184- devices = [torch .cpu , torch .cuda ]
71857175 for device in ["cpu" , "cuda" ]:
71867176 if device == "cuda" and not torch .cuda .is_available ():
71877177 continue
@@ -8520,7 +8510,7 @@ def test_error_msg_type_translation(self):
85208510 weight = torch .nn .Parameter (torch .zeros (1 , 1 , 1 , 3 , dtype = torch .double ))
85218511 model = torch .nn .Conv2d (1 , 1 , (1 , 3 ), stride = 1 , padding = 0 , bias = False )
85228512 model .weight = weight
8523- out = model (input )
8513+ model (input )
85248514
85258515 def test_apply (self ):
85268516 x = torch .arange (1 , 6 )
@@ -8696,7 +8686,7 @@ def test_has_internal_overlap(self):
86968686 self .assertEqual (torch ._debug_has_internal_overlap (c ), OVERLAP_TOO_HARD )
86978687
86988688 def test_allow_tensor_metadata_change (self ):
8699- a = torch .ones (2 , 3 )
8689+ torch .ones (2 , 3 )
87008690 # Metadata changes are allowed on view tensors that are created from detach().
87018691
87028692 def test_memory_format (self ):
@@ -8991,7 +8981,6 @@ def test_add_meta_scalar(self):
89918981 self .assertEqual (y .size (), x .size ())
89928982
89938983 def test_normal_shape (self ):
8994- warned = False
89958984 for device in get_all_device_types ():
89968985 tensor1 = torch .rand (1 , device = device )
89978986 tensor4 = torch .rand (4 , device = device )
@@ -9131,7 +9120,7 @@ def test_dot_data_use(self):
91319120 weight = torch .zeros (1 , 1 , 1 , 3 , dtype = torch .complex64 )
91329121 model = torch .nn .Conv2d (1 , 1 , (1 , 3 ), stride = 1 , padding = 0 , bias = False )
91339122 model .weight .data = weight
9134- out = model (input )
9123+ model (input )
91359124
91369125 def test_empty_storage_view (self ):
91379126 # we should be able to "modify" slices of a 0-element
@@ -9934,7 +9923,7 @@ def __new__(cls, x, *args, **kwargs):
99349923 return super ().__new__ (cls , x , * args , ** kwargs )
99359924
99369925 x = torch .ones (5 )
9937- test_tensor = TestTensor (x )
9926+ TestTensor (x )
99389927
99399928 def test_storage_base_new (self ):
99409929
@@ -9946,7 +9935,7 @@ def __new__(cls, x, *args, **kwargs):
99469935 return super ().__new__ (cls , x , * args , ** kwargs )
99479936
99489937 x = torch .UntypedStorage (5 )
9949- test_storage = TestStorage (x )
9938+ TestStorage (x )
99509939
99519940 def test_pyobj_preserved (self ):
99529941 x = torch .empty (2 )
@@ -10547,7 +10536,7 @@ def test_tensor_fix_weakref_no_leak(self):
1054710536 def callback (w ):
1054810537 nonlocal called
1054910538 called = True
10550- wa = weakref .ref (a , callback )
10539+ _wa = weakref .ref (a , callback )
1055110540 a ._fix_weakref ()
1055210541 del a
1055310542
@@ -10564,7 +10553,7 @@ def test_storage_fix_weakref_no_leak(self):
1056410553 def callback (w ):
1056510554 nonlocal called
1056610555 called = True
10567- wa = weakref .ref (a , callback )
10556+ _wa = weakref .ref (a , callback )
1056810557 a ._fix_weakref ()
1056910558 del a
1057010559
@@ -10745,7 +10734,7 @@ def test_swap_basic(self):
1074510734 with self .assertRaisesRegex (RuntimeError , "AccumulateGrad node that was poisoned by swap_tensors" ):
1074610735 out .sum ().backward ()
1074710736
10748- wr = weakref .ref (t1 )
10737+ _wr = weakref .ref (t1 )
1074910738 with self .assertRaisesRegex (RuntimeError , "has weakref" ):
1075010739 torch .utils .swap_tensors (t1 , t2 )
1075110740
0 commit comments