Skip to content

Commit a3abdbb

Browse files
authored
Fix FutureWarning in doc (scikit-learn#30790)
1 parent 2c2e970 commit a3abdbb

File tree

6 files changed

+27
-9
lines changed

6 files changed

+27
-9
lines changed

examples/linear_model/plot_poisson_regression_non_normal_loss.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,9 @@
110110
("passthrough_numeric", "passthrough", ["BonusMalus"]),
111111
(
112112
"binned_numeric",
113-
KBinsDiscretizer(n_bins=10, random_state=0),
113+
KBinsDiscretizer(
114+
n_bins=10, quantile_method="averaged_inverted_cdf", random_state=0
115+
),
114116
["VehAge", "DrivAge"],
115117
),
116118
("log_scaled_numeric", log_scale_transformer, ["Density"]),

examples/linear_model/plot_tweedie_regression_insurance_claims.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -239,7 +239,9 @@ def score_estimator(
239239
[
240240
(
241241
"binned_numeric",
242-
KBinsDiscretizer(n_bins=10, random_state=0),
242+
KBinsDiscretizer(
243+
n_bins=10, quantile_method="averaged_inverted_cdf", random_state=0
244+
),
243245
["VehAge", "DrivAge"],
244246
),
245247
(
@@ -689,8 +691,7 @@ def lorenz_curve(y_true, y_pred, exposure):
689691
ax.set(
690692
title="Lorenz Curves",
691693
xlabel=(
692-
"Cumulative proportion of exposure\n"
693-
"(ordered by model from safest to riskiest)"
694+
"Cumulative proportion of exposure\n(ordered by model from safest to riskiest)"
694695
),
695696
ylabel="Cumulative proportion of claim amounts",
696697
)

examples/preprocessing/plot_discretization.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,9 @@
4444
X = X.reshape(-1, 1)
4545

4646
# transform the dataset with KBinsDiscretizer
47-
enc = KBinsDiscretizer(n_bins=10, encode="onehot")
47+
enc = KBinsDiscretizer(
48+
n_bins=10, encode="onehot", quantile_method="averaged_inverted_cdf"
49+
)
4850
X_binned = enc.fit_transform(X)
4951

5052
# predict with original dataset

examples/preprocessing/plot_discretization_classification.py

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,9 @@ def get_name(estimator):
7272
(
7373
make_pipeline(
7474
StandardScaler(),
75-
KBinsDiscretizer(encode="onehot", random_state=0),
75+
KBinsDiscretizer(
76+
encode="onehot", quantile_method="averaged_inverted_cdf", random_state=0
77+
),
7678
LogisticRegression(random_state=0),
7779
),
7880
{
@@ -83,7 +85,9 @@ def get_name(estimator):
8385
(
8486
make_pipeline(
8587
StandardScaler(),
86-
KBinsDiscretizer(encode="onehot", random_state=0),
88+
KBinsDiscretizer(
89+
encode="onehot", quantile_method="averaged_inverted_cdf", random_state=0
90+
),
8791
LinearSVC(random_state=0),
8892
),
8993
{

examples/preprocessing/plot_discretization_strategies.py

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,12 @@
7676
i += 1
7777
# transform the dataset with KBinsDiscretizer
7878
for strategy in strategies:
79-
enc = KBinsDiscretizer(n_bins=4, encode="ordinal", strategy=strategy)
79+
enc = KBinsDiscretizer(
80+
n_bins=4,
81+
encode="ordinal",
82+
quantile_method="averaged_inverted_cdf",
83+
strategy=strategy,
84+
)
8085
enc.fit(X)
8186
grid_encoded = enc.transform(grid)
8287

examples/release_highlights/plot_release_highlights_1_2_0.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,11 @@
4242
preprocessor = ColumnTransformer(
4343
[
4444
("scaler", StandardScaler(), sepal_cols),
45-
("kbin", KBinsDiscretizer(encode="ordinal"), petal_cols),
45+
(
46+
"kbin",
47+
KBinsDiscretizer(encode="ordinal", quantile_method="averaged_inverted_cdf"),
48+
petal_cols,
49+
),
4650
],
4751
verbose_feature_names_out=False,
4852
).set_output(transform="pandas")

0 commit comments

Comments
 (0)