Skip to content
This repository was archived by the owner on Aug 30, 2023. It is now read-only.

Commit 064a374

Browse files
我们开源数据集啦,感谢所有参与标注的同学
1 parent a1425c3 commit 064a374

File tree

16 files changed

+89
-70
lines changed

16 files changed

+89
-70
lines changed

C++_inference_openvino_kpt/yolov7_kpt.h

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -25,21 +25,21 @@ using namespace InferenceEngine;
2525
#define IMG_SIZE 416 //推理图像大小,如果不是640 和 416 需要自己在下面添加anchor
2626
#define ANCHOR 3 //anchor 数量
2727
#define DETECT_MODE 1 //ARMOR 0 WIN 1 BOARD 2
28-
#define DEVICE "CPU" // 设备选择
28+
#define DEVICE "GPU" // 设备选择
2929
#define VIDEO //是否展示推理视频
3030

3131
#if DETECT_MODE == 0 // 装甲板四点模型
3232
#define KPT_NUM 4
3333
#define CLS_NUM 14
34-
#define MODEL_PATH "/home/knight/C++_inference_openvino_old/demo_weight/yolov8tiny.onnx"
34+
#define MODEL_PATH ""
3535
#elif DETECT_MODE == 1 // 能量机关五点模型
3636
#define KPT_NUM 5
3737
#define CLS_NUM 4
38-
#define MODEL_PATH "/home/knight/C++_inference_openvino_old/demo_weight/yolov8tiny-win.onnx"
38+
#define MODEL_PATH ""
3939
#elif DETECT_MODE == 2 // 视觉识别版检测模型
4040
#define KPT_NUM 0
4141
#define CLS_NUM 4
42-
#define MODEL_PATH "/home/knight/Sharefolder_Knight/best_board_416.onnx"
42+
#define MODEL_PATH ""
4343
#endif
4444
class yolo_kpt {
4545
public:

README.md

Lines changed: 16 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -104,16 +104,26 @@
104104

105105
##### 装甲板四点模型
106106

107-
+ 西交利物浦大学RM2023赛季场地数据集数据集录制 2500张。
108-
+ RM视觉开源站数据集 3000张。
109-
+ 共计 5500张。
107+
+ 西交利物浦大学RM2023赛季场地数据集数据集录制约 2500张。
108+
+ RM视觉开源站数据集约 3000张。
109+
+ 视频内录约 15000张
110+
+ 共计约 20500张。
111+
__数据集开源地址: __
112+
+ **```注意```**
113+
1.```YOLO格式数据集```中有部分数据集使用的也是四点格式,不影响使用。(YOLO格式按照识别版模型识别就行,只关注label,xywh)<br>
114+
2.```四点格式数据集```中均为四点格式,数量较少。(人手真的不够,标不了)
110115

111116
##### 能量机关五点模型
112117

113-
+ 西交利物浦大学RM2023赛季场地数据集数据集录制 1000张。
114-
+ 共计 1000张。
118+
+ 西交利物浦大学RM2023赛季场地数据集数据集录制约 1000张。
119+
+ 东北大学能量机关西交利物浦步兵相机内录数据集约 1100张。
120+
+ 手机模拟西交利物浦大学步兵相机内录场地风车数据集约 100张。
121+
+ 其他学校提供的内录视频并按照西交利物浦标注格式标注的数据集约 200张。
122+
+ 官方样例能量数据集约 500张。
123+
+ 共计约 3000张。
115124
<br><br>
116125

126+
__数据集开源地址: 链接: https://pan.baidu.com/s/1ayRI1MMw40ae4kuFZCXK_Q?pwd=XPGM 提取码: XPGM__
117127
##### 视觉识别板检测模型
118128

119129
+ 西交利物浦大学RM2023赛季场地数据集数据集录制 2000张。
@@ -203,6 +213,7 @@
203213
+ 该项目针对RMUC2023赛季,如果你有好的建议,欢迎给我留言哦。
204214
+ 如果你觉得项目对你有帮助,请给个star吧~
205215
+ 如果你有更好的建议,欢迎提出PR,或者直接联系我哦,大家一起学习!
216+
+ __感谢西浦GMaster战队在比赛期间标注数据的嵌入式组和机械组的战友,你们都为视觉组做出了一份重要的贡献!__
206217

207218
## 联系方式
208219

cfg/armor/shufflenet-0.5-armor.yaml

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,7 @@
11
# XJTLU GMaster zR
22
nc: 14 # number of classes
3-
nkpt: 4 # number of keypoints
43
depth_multiple: 0.33 # model depth multiple
54
width_multiple: 0.5 # layer channel multiple
6-
dw_conv_kpt: True
75

86
# anchors
97
anchors:
@@ -40,5 +38,5 @@ head:
4038
[-1, 1, Conv, [512, 3, 2]],
4139
[[-1, 7], 1, Concat, [1]], # cat head P5
4240
[-1, 3, C2f, [1024]], # 27 (P5/32-large)
43-
[[13, 16, 19], 1, IKeypoint, [nc, anchors, nkpt]], # Detect(P3, P4, P5)
41+
[[13, 16, 19], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
4442
]

data/armor/armor_detect.yaml

Lines changed: 5 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,5 @@
1-
train: /media/zr/Data/RoboMaster_data/Smart_Car_1/images/train/
2-
val: /media/zr/Data/RoboMaster_data/Smart_Car_1/images/val/
3-
test: /media/zr/Data/RoboMaster_data/Smart_Car_1/images/test/
4-
nc: 28
5-
names: ['Plant_Corn_1', 'Plant_Corn_2', 'Plant_Corn_3', 'Plant_Corn_4',
6-
'Plant_Cucumber_1', 'Plant_Cucumber_2', 'Plant_Cucumber_3', 'Plant_Cucumber_4',
7-
'Plant_Rice_1', 'Plant_Rice_2', 'Plant_Rice_3', 'Plant_Rice_4',
8-
'Plant_Wheat_1', 'Plant_Wheat_2', 'Plant_Wheat_3', 'Plant_Wheat_4',
9-
'Fruit_Corn_1', 'Fruit_Corn_2', 'Fruit_Corn_3', 'Fruit_Corn_4',
10-
'Fruit_Cucumber_1', 'Fruit_Cucumber_2', 'Fruit_Cucumber_3', 'Fruit_Cucumber_4',
11-
'Fruit_Watermelon_1', 'Fruit_Watermelon_2', 'Fruit_Watermelon_3', 'Fruit_Watermelon_4']
1+
train: /media/zr/Data/RoboMaster_data/dataset/XJTLU_detect/images/train/
2+
val: /media/zr/Data/RoboMaster_data/dataset/XJTLU_detect/images/val/
3+
test:
4+
nc: 14
5+
names: ['B1','B2','B3','B4','B5','BO','BS','R1','R2','R3','R4','R5','RO','RS']

data/armor/armor_kpt.yaml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
1-
train: /media/zr/Data/RoboMaster_data/dataset/XJTLU_2022_keypoints/images/train/
2-
val: /media/zr/Data/RoboMaster_data/dataset/XJTLU_2022_keypoints/images/val/
3-
test: /media/zr/Data/RoboMaster_data/dataset/XJTLU_2022_keypoints/images/test/
1+
train: /media/zr/Data/RoboMaster_data/dataset/XJTLU_detect/images/train/images/train/
2+
val: /media/zr/Data/RoboMaster_data/dataset/XJTLU_detect/images/val/images/train/
3+
test:
44
nc: 14
55
names: ['B1','B2','B3','B4','B5','BO','BS','R1','R2','R3','R4','R5','RO','RS']

data/armor/hyp.armor.yaml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,10 +15,10 @@ iou_t: 0.20 # IoU training threshold
1515
anchor_t: 4.0 # anchor-multiple threshold
1616
# anchors: 3 # anchors per output layer (0 to ignore)
1717
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
18-
hsv_h: 0.7 # image HSV-Hue augmentation (fraction)
19-
hsv_s: 0.5 # image HSV-Saturation augmentation (fraction)
20-
hsv_v: 0.3 # image HSV-Value augmentation (fraction)
21-
degrees: 0.0 # image rotation (+/- deg)
18+
hsv_h: 0.05 # image HSV-Hue augmentation (fraction)
19+
hsv_s: 0.3 # image HSV-Saturation augmentation (fraction)
20+
hsv_v: 0.5 # image HSV-Value augmentation (fraction)
21+
degrees: 0.3 # image rotation (+/- deg)
2222
translate: 0.1 # image translation (+/- fraction)
2323
scale: 0.1 # image scale (+/- gain)
2424
shear: 0.0 # image shear (+/- deg)

data/winmill/win_kpt.yaml

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
1-
train: /media/zr/Data/RoboMaster_data/dataset/XJTLU_WIN
2-
val: /media/zr/Data/RoboMaster_data/dataset/XJTLU_WIN
3-
test: /media/zr/Data/RoboMaster_data/dataset/XJTLU_WIN
1+
train: /media/zr/Data/RoboMaster_data/dataset/XJTLU_WIN/images/train/
2+
val: /media/zr/Data/RoboMaster_data/dataset/XJTLU_WIN/images/train/
43
nc: 4
54
names: ['RR','RW','BR','BW']
65
# 红Right(正确打击) 红 Wrong(已经打击) 蓝 Right(正确打击) 蓝 Wrong(已经打击)

detect.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@ def detect(opt):
172172
parser = argparse.ArgumentParser()
173173
parser.add_argument('--weights', nargs='+', type=str,
174174
default='../win_kpt/runs/train/exp/weights/best.pt',help='model.pt path(s)')
175-
parser.add_argument('--source', type=str, default='/media/zr/Data/RoboMaster_data/record/red-win.MP4', help='source')
175+
parser.add_argument('--source', type=str, default='/media/zr/Data/Sharefolder_zR_PC/output.mp4', help='source')
176176
parser.add_argument('--img-size', nargs='+', type=int, default=416, help='inference size (pixels)')
177177
parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold')
178178
parser.add_argument('--iou-thres', type=float, default=0.4, help='IOU threshold for NMS')

export.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,11 +17,12 @@
1717

1818
if __name__ == '__main__':
1919
parser = argparse.ArgumentParser()
20-
parser.add_argument('--weights', type=str, default='../win_kpt/runs/train/exp2/weights/best.pt', help='weights path')
20+
parser.add_argument('--weights', type=str, default='../armor_detct_new/runs/train/exp/weights/best.pt', help='weights path')
21+
# parser.add_argument('--weights', type=str, default='../win_kpt/runs/train/exp/weights/best.pt', help='weights path')
2122
parser.add_argument('--img-size', nargs='+', type=int, default=[416, 416], help='image size') # height, width
2223
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
2324
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
24-
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
25+
parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
2526
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
2627
parser.add_argument('--simplify', type=bool, default=True, help='simplify ONNX model') # ONNX-only
2728
parser.add_argument('--export-nms', action='store_true',

pre-processing_script/change_anchor.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,6 @@
1414
sys.path.append('./')
1515
import utils.autoanchor as autoAC
1616

17-
new_anchors = autoAC.kmean_anchors('data/winmill/win_kpt.yaml', 9, 416, 5.0, 1000, True)
17+
new_anchors = autoAC.kmean_anchors('../data/winmill/win_kpt.yaml', 9, 416, 5.0, 1000, True)
1818
print("生成的anchor如下:")
1919
print(new_anchors)

0 commit comments

Comments
 (0)