@@ -2364,7 +2364,7 @@ def save_lora_weights(
23642364
23652365class CogVideoXLoraLoaderMixin (LoraBaseMixin ):
23662366 r"""
2367- Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoX `].
2367+ Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline `].
23682368 """
23692369
23702370 _lora_loadable_modules = ["transformer" ]
@@ -2669,6 +2669,314 @@ def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], *
26692669 super ().unfuse_lora (components = components )
26702670
26712671
2672+ class Mochi1LoraLoaderMixin (LoraBaseMixin ):
2673+ r"""
2674+ Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
2675+ """
2676+
2677+ _lora_loadable_modules = ["transformer" ]
2678+ transformer_name = TRANSFORMER_NAME
2679+
2680+ @classmethod
2681+ @validate_hf_hub_args
2682+ # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
2683+ def lora_state_dict (
2684+ cls ,
2685+ pretrained_model_name_or_path_or_dict : Union [str , Dict [str , torch .Tensor ]],
2686+ ** kwargs ,
2687+ ):
2688+ r"""
2689+ Return state dict for lora weights and the network alphas.
2690+
2691+ <Tip warning={true}>
2692+
2693+ We support loading A1111 formatted LoRA checkpoints in a limited capacity.
2694+
2695+ This function is experimental and might change in the future.
2696+
2697+ </Tip>
2698+
2699+ Parameters:
2700+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
2701+ Can be either:
2702+
2703+ - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
2704+ the Hub.
2705+ - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
2706+ with [`ModelMixin.save_pretrained`].
2707+ - A [torch state
2708+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
2709+
2710+ cache_dir (`Union[str, os.PathLike]`, *optional*):
2711+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
2712+ is not used.
2713+ force_download (`bool`, *optional*, defaults to `False`):
2714+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
2715+ cached versions if they exist.
2716+
2717+ proxies (`Dict[str, str]`, *optional*):
2718+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
2719+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
2720+ local_files_only (`bool`, *optional*, defaults to `False`):
2721+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
2722+ won't be downloaded from the Hub.
2723+ token (`str` or *bool*, *optional*):
2724+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
2725+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
2726+ revision (`str`, *optional*, defaults to `"main"`):
2727+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
2728+ allowed by Git.
2729+ subfolder (`str`, *optional*, defaults to `""`):
2730+ The subfolder location of a model file within a larger model repository on the Hub or locally.
2731+
2732+ """
2733+ # Load the main state dict first which has the LoRA layers for either of
2734+ # transformer and text encoder or both.
2735+ cache_dir = kwargs .pop ("cache_dir" , None )
2736+ force_download = kwargs .pop ("force_download" , False )
2737+ proxies = kwargs .pop ("proxies" , None )
2738+ local_files_only = kwargs .pop ("local_files_only" , None )
2739+ token = kwargs .pop ("token" , None )
2740+ revision = kwargs .pop ("revision" , None )
2741+ subfolder = kwargs .pop ("subfolder" , None )
2742+ weight_name = kwargs .pop ("weight_name" , None )
2743+ use_safetensors = kwargs .pop ("use_safetensors" , None )
2744+
2745+ allow_pickle = False
2746+ if use_safetensors is None :
2747+ use_safetensors = True
2748+ allow_pickle = True
2749+
2750+ user_agent = {
2751+ "file_type" : "attn_procs_weights" ,
2752+ "framework" : "pytorch" ,
2753+ }
2754+
2755+ state_dict = _fetch_state_dict (
2756+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict ,
2757+ weight_name = weight_name ,
2758+ use_safetensors = use_safetensors ,
2759+ local_files_only = local_files_only ,
2760+ cache_dir = cache_dir ,
2761+ force_download = force_download ,
2762+ proxies = proxies ,
2763+ token = token ,
2764+ revision = revision ,
2765+ subfolder = subfolder ,
2766+ user_agent = user_agent ,
2767+ allow_pickle = allow_pickle ,
2768+ )
2769+
2770+ is_dora_scale_present = any ("dora_scale" in k for k in state_dict )
2771+ if is_dora_scale_present :
2772+ warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
2773+ logger .warning (warn_msg )
2774+ state_dict = {k : v for k , v in state_dict .items () if "dora_scale" not in k }
2775+
2776+ return state_dict
2777+
2778+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
2779+ def load_lora_weights (
2780+ self , pretrained_model_name_or_path_or_dict : Union [str , Dict [str , torch .Tensor ]], adapter_name = None , ** kwargs
2781+ ):
2782+ """
2783+ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
2784+ `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
2785+ [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
2786+ See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
2787+ dict is loaded into `self.transformer`.
2788+
2789+ Parameters:
2790+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
2791+ See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
2792+ adapter_name (`str`, *optional*):
2793+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
2794+ `default_{i}` where i is the total number of adapters being loaded.
2795+ low_cpu_mem_usage (`bool`, *optional*):
2796+ Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
2797+ weights.
2798+ kwargs (`dict`, *optional*):
2799+ See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
2800+ """
2801+ if not USE_PEFT_BACKEND :
2802+ raise ValueError ("PEFT backend is required for this method." )
2803+
2804+ low_cpu_mem_usage = kwargs .pop ("low_cpu_mem_usage" , _LOW_CPU_MEM_USAGE_DEFAULT_LORA )
2805+ if low_cpu_mem_usage and is_peft_version ("<" , "0.13.0" ):
2806+ raise ValueError (
2807+ "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
2808+ )
2809+
2810+ # if a dict is passed, copy it instead of modifying it inplace
2811+ if isinstance (pretrained_model_name_or_path_or_dict , dict ):
2812+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict .copy ()
2813+
2814+ # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2815+ state_dict = self .lora_state_dict (pretrained_model_name_or_path_or_dict , ** kwargs )
2816+
2817+ is_correct_format = all ("lora" in key for key in state_dict .keys ())
2818+ if not is_correct_format :
2819+ raise ValueError ("Invalid LoRA checkpoint." )
2820+
2821+ self .load_lora_into_transformer (
2822+ state_dict ,
2823+ transformer = getattr (self , self .transformer_name ) if not hasattr (self , "transformer" ) else self .transformer ,
2824+ adapter_name = adapter_name ,
2825+ _pipeline = self ,
2826+ low_cpu_mem_usage = low_cpu_mem_usage ,
2827+ )
2828+
2829+ @classmethod
2830+ # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
2831+ def load_lora_into_transformer (
2832+ cls , state_dict , transformer , adapter_name = None , _pipeline = None , low_cpu_mem_usage = False
2833+ ):
2834+ """
2835+ This will load the LoRA layers specified in `state_dict` into `transformer`.
2836+
2837+ Parameters:
2838+ state_dict (`dict`):
2839+ A standard state dict containing the lora layer parameters. The keys can either be indexed directly
2840+ into the unet or prefixed with an additional `unet` which can be used to distinguish between text
2841+ encoder lora layers.
2842+ transformer (`CogVideoXTransformer3DModel`):
2843+ The Transformer model to load the LoRA layers into.
2844+ adapter_name (`str`, *optional*):
2845+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
2846+ `default_{i}` where i is the total number of adapters being loaded.
2847+ low_cpu_mem_usage (`bool`, *optional*):
2848+ Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
2849+ weights.
2850+ """
2851+ if low_cpu_mem_usage and is_peft_version ("<" , "0.13.0" ):
2852+ raise ValueError (
2853+ "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
2854+ )
2855+
2856+ # Load the layers corresponding to transformer.
2857+ logger .info (f"Loading { cls .transformer_name } ." )
2858+ transformer .load_lora_adapter (
2859+ state_dict ,
2860+ network_alphas = None ,
2861+ adapter_name = adapter_name ,
2862+ _pipeline = _pipeline ,
2863+ low_cpu_mem_usage = low_cpu_mem_usage ,
2864+ )
2865+
2866+ @classmethod
2867+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
2868+ def save_lora_weights (
2869+ cls ,
2870+ save_directory : Union [str , os .PathLike ],
2871+ transformer_lora_layers : Dict [str , Union [torch .nn .Module , torch .Tensor ]] = None ,
2872+ is_main_process : bool = True ,
2873+ weight_name : str = None ,
2874+ save_function : Callable = None ,
2875+ safe_serialization : bool = True ,
2876+ ):
2877+ r"""
2878+ Save the LoRA parameters corresponding to the UNet and text encoder.
2879+
2880+ Arguments:
2881+ save_directory (`str` or `os.PathLike`):
2882+ Directory to save LoRA parameters to. Will be created if it doesn't exist.
2883+ transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
2884+ State dict of the LoRA layers corresponding to the `transformer`.
2885+ is_main_process (`bool`, *optional*, defaults to `True`):
2886+ Whether the process calling this is the main process or not. Useful during distributed training and you
2887+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
2888+ process to avoid race conditions.
2889+ save_function (`Callable`):
2890+ The function to use to save the state dictionary. Useful during distributed training when you need to
2891+ replace `torch.save` with another method. Can be configured with the environment variable
2892+ `DIFFUSERS_SAVE_MODE`.
2893+ safe_serialization (`bool`, *optional*, defaults to `True`):
2894+ Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
2895+ """
2896+ state_dict = {}
2897+
2898+ if not transformer_lora_layers :
2899+ raise ValueError ("You must pass `transformer_lora_layers`." )
2900+
2901+ if transformer_lora_layers :
2902+ state_dict .update (cls .pack_weights (transformer_lora_layers , cls .transformer_name ))
2903+
2904+ # Save the model
2905+ cls .write_lora_layers (
2906+ state_dict = state_dict ,
2907+ save_directory = save_directory ,
2908+ is_main_process = is_main_process ,
2909+ weight_name = weight_name ,
2910+ save_function = save_function ,
2911+ safe_serialization = safe_serialization ,
2912+ )
2913+
2914+ # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer
2915+ def fuse_lora (
2916+ self ,
2917+ components : List [str ] = ["transformer" , "text_encoder" ],
2918+ lora_scale : float = 1.0 ,
2919+ safe_fusing : bool = False ,
2920+ adapter_names : Optional [List [str ]] = None ,
2921+ ** kwargs ,
2922+ ):
2923+ r"""
2924+ Fuses the LoRA parameters into the original parameters of the corresponding blocks.
2925+
2926+ <Tip warning={true}>
2927+
2928+ This is an experimental API.
2929+
2930+ </Tip>
2931+
2932+ Args:
2933+ components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
2934+ lora_scale (`float`, defaults to 1.0):
2935+ Controls how much to influence the outputs with the LoRA parameters.
2936+ safe_fusing (`bool`, defaults to `False`):
2937+ Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
2938+ adapter_names (`List[str]`, *optional*):
2939+ Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
2940+
2941+ Example:
2942+
2943+ ```py
2944+ from diffusers import DiffusionPipeline
2945+ import torch
2946+
2947+ pipeline = DiffusionPipeline.from_pretrained(
2948+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
2949+ ).to("cuda")
2950+ pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
2951+ pipeline.fuse_lora(lora_scale=0.7)
2952+ ```
2953+ """
2954+ super ().fuse_lora (
2955+ components = components , lora_scale = lora_scale , safe_fusing = safe_fusing , adapter_names = adapter_names
2956+ )
2957+
2958+ # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.unfuse_lora with unet->transformer
2959+ def unfuse_lora (self , components : List [str ] = ["transformer" , "text_encoder" ], ** kwargs ):
2960+ r"""
2961+ Reverses the effect of
2962+ [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
2963+
2964+ <Tip warning={true}>
2965+
2966+ This is an experimental API.
2967+
2968+ </Tip>
2969+
2970+ Args:
2971+ components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
2972+ unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
2973+ unfuse_text_encoder (`bool`, defaults to `True`):
2974+ Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
2975+ LoRA parameters then it won't have any effect.
2976+ """
2977+ super ().unfuse_lora (components = components )
2978+
2979+
26722980class LoraLoaderMixin (StableDiffusionLoraLoaderMixin ):
26732981 def __init__ (self , * args , ** kwargs ):
26742982 deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
0 commit comments