|
6 | 6 |
|
7 | 7 | Example usage: |
8 | 8 | python scripts/convert_cogview3_to_diffusers.py \ |
9 | | - --original_state_dict_repo_id "THUDM/cogview3" \ |
| 9 | + --original_state_dict_repo_id "THUDM/cogview3-sat" \ |
10 | 10 | --filename "cogview3.pt" \ |
11 | 11 | --transformer \ |
12 | 12 | --output_path "./cogview3_diffusers" \ |
13 | 13 | --dtype "bf16" |
14 | 14 |
|
15 | 15 | Alternatively, if you have a local checkpoint: |
16 | 16 | python scripts/convert_cogview3_to_diffusers.py \ |
17 | | - --checkpoint_path '/raid/.cache/huggingface/models--ZP2HF--CogView3-SAT/snapshots/ca86ce9ba94f9a7f2dd109e7a59e4c8ad04121be/cogview3plus_3b/1/mp_rank_00_model_states.pt' \ |
| 17 | + --checkpoint_path 'your path/cogview3plus_3b/1/mp_rank_00_model_states.pt' \ |
18 | 18 | --transformer \ |
19 | 19 | --output_path "/raid/yiyi/cogview3_diffusers" \ |
20 | 20 | --dtype "bf16" |
|
26 | 26 | --transformer: Flag to convert the transformer model. |
27 | 27 | --output_path: The path to save the converted model. |
28 | 28 | --dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). |
| 29 | + Default is "bf16" because CogView3 uses bfloat16 for Training. |
29 | 30 |
|
30 | 31 | Note: You must provide either --original_state_dict_repo_id or --checkpoint_path. |
31 | 32 | """ |
@@ -173,7 +174,7 @@ def main(args): |
173 | 174 | transformer.load_state_dict(converted_transformer_state_dict, strict=True) |
174 | 175 |
|
175 | 176 | print(f"Saving CogView3 Transformer in Diffusers format in {args.output_path}/transformer") |
176 | | - transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer") |
| 177 | + transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer", max_shard_size="5GB") |
177 | 178 |
|
178 | 179 | if len(original_ckpt) > 0: |
179 | 180 | print(f"Warning: {len(original_ckpt)} keys were not converted and will be saved as is: {original_ckpt.keys()}") |
|
0 commit comments