|
| 1 | +""" |
| 2 | +Convert a CogView4 checkpoint to the Diffusers format. |
| 3 | +
|
| 4 | +This script converts a CogView4 checkpoint to the Diffusers format, which can then be used |
| 5 | +with the Diffusers library. |
| 6 | +
|
| 7 | +Example usage: |
| 8 | + python scripts/convert_cogview4_to_diffusers.py \ |
| 9 | + --transformer_checkpoint_path 'your path/cogview4_6b/1/mp_rank_00_model_states.pt' \ |
| 10 | + --vae_checkpoint_path 'your path/cogview4_6b/imagekl_ch16.pt' \ |
| 11 | + --output_path "THUDM/CogView4-6B" \ |
| 12 | + --dtype "bf16" |
| 13 | +
|
| 14 | +Arguments: |
| 15 | + --transformer_checkpoint_path: Path to Transformer state dict. |
| 16 | + --vae_checkpoint_path: Path to VAE state dict. |
| 17 | + --output_path: The path to save the converted model. |
| 18 | + --push_to_hub: Whether to push the converted checkpoint to the HF Hub or not. Defaults to `False`. |
| 19 | + --text_encoder_cache_dir: Cache directory where text encoder is located. Defaults to None, which means HF_HOME will be used. |
| 20 | + --dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). If None, the dtype of the state dict is considered. |
| 21 | +
|
| 22 | + Default is "bf16" because CogView4 uses bfloat16 for training. |
| 23 | +
|
| 24 | +Note: You must provide either --transformer_checkpoint_path or --vae_checkpoint_path. |
| 25 | +""" |
| 26 | + |
| 27 | +import argparse |
| 28 | +from contextlib import nullcontext |
| 29 | +import torch |
| 30 | +from transformers import PreTrainedTokenizerFast, GlmForCausalLM |
| 31 | +from tqdm import tqdm |
| 32 | + |
| 33 | +from diffusers import ( |
| 34 | + AutoencoderKL, |
| 35 | + CogView4DDIMScheduler, |
| 36 | + CogView4Pipeline, |
| 37 | + CogView4Transformer2DModel, |
| 38 | +) |
| 39 | +from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint |
| 40 | + |
| 41 | +parser = argparse.ArgumentParser() |
| 42 | +parser.add_argument( |
| 43 | + "--transformer_checkpoint_path", |
| 44 | + default=None, |
| 45 | + type=str, |
| 46 | + help="Path to Megatron (not SAT) Transformer checkpoint, e.g., 'model_optim_rng.pt'.", |
| 47 | +) |
| 48 | +parser.add_argument( |
| 49 | + "--vae_checkpoint_path", |
| 50 | + default=None, |
| 51 | + type=str, |
| 52 | + help="(Optional) Path to VAE checkpoint, e.g., 'imagekl_ch16.pt'.", |
| 53 | +) |
| 54 | +parser.add_argument( |
| 55 | + "--output_path", |
| 56 | + required=True, |
| 57 | + type=str, |
| 58 | + help="Directory to save the final Diffusers format pipeline.", |
| 59 | +) |
| 60 | +parser.add_argument( |
| 61 | + "--push_to_hub", |
| 62 | + action="store_true", |
| 63 | + default=False, |
| 64 | + help="Whether to push the converted model to the HuggingFace Hub.", |
| 65 | +) |
| 66 | +parser.add_argument( |
| 67 | + "--text_encoder_cache_dir", |
| 68 | + type=str, |
| 69 | + default=None, |
| 70 | + help="Specify the cache directory for the text encoder.", |
| 71 | +) |
| 72 | +parser.add_argument( |
| 73 | + "--dtype", |
| 74 | + type=str, |
| 75 | + default="bf16", |
| 76 | + choices=["fp16", "bf16", "fp32"], |
| 77 | + help="Data type to save the model in.", |
| 78 | +) |
| 79 | + |
| 80 | +parser.add_argument( |
| 81 | + "--num_layers", |
| 82 | + type=int, |
| 83 | + default=28, |
| 84 | + help="Number of Transformer layers (e.g., 28, 48...).", |
| 85 | +) |
| 86 | +parser.add_argument( |
| 87 | + "--num_heads", |
| 88 | + type=int, |
| 89 | + default=32, |
| 90 | + help="Number of attention heads.", |
| 91 | +) |
| 92 | +parser.add_argument( |
| 93 | + "--hidden_size", |
| 94 | + type=int, |
| 95 | + default=4096, |
| 96 | + help="Transformer hidden dimension size.", |
| 97 | +) |
| 98 | +parser.add_argument( |
| 99 | + "--attention_head_dim", |
| 100 | + type=int, |
| 101 | + default=128, |
| 102 | + help="Dimension of each attention head.", |
| 103 | +) |
| 104 | +parser.add_argument( |
| 105 | + "--time_embed_dim", |
| 106 | + type=int, |
| 107 | + default=512, |
| 108 | + help="Dimension of time embeddings.", |
| 109 | +) |
| 110 | +parser.add_argument( |
| 111 | + "--condition_dim", |
| 112 | + type=int, |
| 113 | + default=256, |
| 114 | + help="Dimension of condition embeddings.", |
| 115 | +) |
| 116 | +parser.add_argument( |
| 117 | + "--pos_embed_max_size", |
| 118 | + type=int, |
| 119 | + default=128, |
| 120 | + help="Maximum size for positional embeddings.", |
| 121 | +) |
| 122 | + |
| 123 | +args = parser.parse_args() |
| 124 | + |
| 125 | + |
| 126 | +def swap_scale_shift(weight, dim): |
| 127 | + """ |
| 128 | + Swap the scale and shift components in the weight tensor. |
| 129 | +
|
| 130 | + Args: |
| 131 | + weight (torch.Tensor): The original weight tensor. |
| 132 | + dim (int): The dimension along which to split. |
| 133 | +
|
| 134 | + Returns: |
| 135 | + torch.Tensor: The modified weight tensor with scale and shift swapped. |
| 136 | + """ |
| 137 | + shift, scale = weight.chunk(2, dim=dim) |
| 138 | + new_weight = torch.cat([scale, shift], dim=dim) |
| 139 | + return new_weight |
| 140 | + |
| 141 | + |
| 142 | +def convert_megatron_transformer_checkpoint_to_diffusers( |
| 143 | + ckpt_path: str, |
| 144 | + num_layers: int, |
| 145 | + num_heads: int, |
| 146 | + hidden_size: int, |
| 147 | +): |
| 148 | + """ |
| 149 | + Convert a Megatron Transformer checkpoint to Diffusers format. |
| 150 | +
|
| 151 | + Args: |
| 152 | + ckpt_path (str): Path to the Megatron Transformer checkpoint. |
| 153 | + num_layers (int): Number of Transformer layers. |
| 154 | + num_heads (int): Number of attention heads. |
| 155 | + hidden_size (int): Hidden size of the Transformer. |
| 156 | +
|
| 157 | + Returns: |
| 158 | + dict: The converted state dictionary compatible with Diffusers. |
| 159 | + """ |
| 160 | + ckpt = torch.load(ckpt_path, map_location="cpu") |
| 161 | + mega = ckpt["model"] |
| 162 | + |
| 163 | + new_state_dict = {} |
| 164 | + |
| 165 | + # Patch Embedding |
| 166 | + new_state_dict["patch_embed.proj.weight"] = mega["encoder_expand_linear.weight"].reshape(hidden_size, 64) |
| 167 | + new_state_dict["patch_embed.proj.bias"] = mega["encoder_expand_linear.bias"] |
| 168 | + new_state_dict["patch_embed.text_proj.weight"] = mega["text_projector.weight"] |
| 169 | + new_state_dict["patch_embed.text_proj.bias"] = mega["text_projector.bias"] |
| 170 | + |
| 171 | + # Time Condition Embedding |
| 172 | + new_state_dict["time_condition_embed.timestep_embedder.linear_1.weight"] = mega[ |
| 173 | + "time_embedding.time_embed.0.weight" |
| 174 | + ] |
| 175 | + new_state_dict["time_condition_embed.timestep_embedder.linear_1.bias"] = mega["time_embedding.time_embed.0.bias"] |
| 176 | + new_state_dict["time_condition_embed.timestep_embedder.linear_2.weight"] = mega[ |
| 177 | + "time_embedding.time_embed.2.weight" |
| 178 | + ] |
| 179 | + new_state_dict["time_condition_embed.timestep_embedder.linear_2.bias"] = mega["time_embedding.time_embed.2.bias"] |
| 180 | + |
| 181 | + new_state_dict["time_condition_embed.condition_embedder.linear_1.weight"] = mega[ |
| 182 | + "label_embedding.label_embed.0.weight" |
| 183 | + ] |
| 184 | + new_state_dict["time_condition_embed.condition_embedder.linear_1.bias"] = mega[ |
| 185 | + "label_embedding.label_embed.0.bias" |
| 186 | + ] |
| 187 | + new_state_dict["time_condition_embed.condition_embedder.linear_2.weight"] = mega[ |
| 188 | + "label_embedding.label_embed.2.weight" |
| 189 | + ] |
| 190 | + new_state_dict["time_condition_embed.condition_embedder.linear_2.bias"] = mega[ |
| 191 | + "label_embedding.label_embed.2.bias" |
| 192 | + ] |
| 193 | + |
| 194 | + # Convert each Transformer layer |
| 195 | + for i in tqdm(range(num_layers), desc="Converting layers (Megatron->Diffusers)"): |
| 196 | + block_prefix = f"transformer_blocks.{i}." |
| 197 | + |
| 198 | + # AdaLayerNorm |
| 199 | + new_state_dict[block_prefix + "norm1.linear.weight"] = swap_scale_shift( |
| 200 | + mega[f"decoder.layers.{i}.adaln.weight"], dim=0 |
| 201 | + ) |
| 202 | + new_state_dict[block_prefix + "norm1.linear.bias"] = swap_scale_shift( |
| 203 | + mega[f"decoder.layers.{i}.adaln.bias"], dim=0 |
| 204 | + ) |
| 205 | + |
| 206 | + # QKV |
| 207 | + qkv_weight = mega[f"decoder.layers.{i}.self_attention.linear_qkv.weight"] |
| 208 | + qkv_bias = mega[f"decoder.layers.{i}.self_attention.linear_qkv.bias"] |
| 209 | + |
| 210 | + # Reshape to match SAT logic |
| 211 | + qkv_weight = qkv_weight.view(num_heads, 3, hidden_size // num_heads, hidden_size) |
| 212 | + qkv_weight = qkv_weight.permute(1, 0, 2, 3).reshape(3 * hidden_size, hidden_size) |
| 213 | + |
| 214 | + qkv_bias = qkv_bias.view(num_heads, 3, hidden_size // num_heads) |
| 215 | + qkv_bias = qkv_bias.permute(1, 0, 2).reshape(3 * hidden_size) |
| 216 | + |
| 217 | + # Assign to Diffusers keys |
| 218 | + q, k, v = torch.chunk(qkv_weight, 3, dim=0) |
| 219 | + qb, kb, vb = torch.chunk(qkv_bias, 3, dim=0) |
| 220 | + |
| 221 | + new_state_dict[block_prefix + "attn1.to_q.weight"] = q |
| 222 | + new_state_dict[block_prefix + "attn1.to_q.bias"] = qb |
| 223 | + new_state_dict[block_prefix + "attn1.to_k.weight"] = k |
| 224 | + new_state_dict[block_prefix + "attn1.to_k.bias"] = kb |
| 225 | + new_state_dict[block_prefix + "attn1.to_v.weight"] = v |
| 226 | + new_state_dict[block_prefix + "attn1.to_v.bias"] = vb |
| 227 | + |
| 228 | + # Attention Output |
| 229 | + new_state_dict[block_prefix + "attn1.to_out.0.weight"] = mega[ |
| 230 | + f"decoder.layers.{i}.self_attention.linear_proj.weight" |
| 231 | + ].T |
| 232 | + new_state_dict[block_prefix + "attn1.to_out.0.bias"] = mega[ |
| 233 | + f"decoder.layers.{i}.self_attention.linear_proj.bias" |
| 234 | + ] |
| 235 | + |
| 236 | + # MLP |
| 237 | + new_state_dict[block_prefix + "ff.net.0.proj.weight"] = mega[f"decoder.layers.{i}.mlp.linear_fc1.weight"] |
| 238 | + new_state_dict[block_prefix + "ff.net.0.proj.bias"] = mega[f"decoder.layers.{i}.mlp.linear_fc1.bias"] |
| 239 | + new_state_dict[block_prefix + "ff.net.2.weight"] = mega[f"decoder.layers.{i}.mlp.linear_fc2.weight"] |
| 240 | + new_state_dict[block_prefix + "ff.net.2.bias"] = mega[f"decoder.layers.{i}.mlp.linear_fc2.bias"] |
| 241 | + |
| 242 | + # Final Layers |
| 243 | + new_state_dict["norm_out.linear.weight"] = swap_scale_shift(mega["adaln_final.weight"], dim=0) |
| 244 | + new_state_dict["norm_out.linear.bias"] = swap_scale_shift(mega["adaln_final.bias"], dim=0) |
| 245 | + new_state_dict["proj_out.weight"] = mega["output_projector.weight"] |
| 246 | + new_state_dict["proj_out.bias"] = mega["output_projector.bias"] |
| 247 | + |
| 248 | + return new_state_dict |
| 249 | + |
| 250 | + |
| 251 | +def convert_cogview4_vae_checkpoint_to_diffusers(ckpt_path, vae_config): |
| 252 | + """ |
| 253 | + Convert a CogView4 VAE checkpoint to Diffusers format. |
| 254 | +
|
| 255 | + Args: |
| 256 | + ckpt_path (str): Path to the VAE checkpoint. |
| 257 | + vae_config (dict): Configuration dictionary for the VAE. |
| 258 | +
|
| 259 | + Returns: |
| 260 | + dict: The converted VAE state dictionary compatible with Diffusers. |
| 261 | + """ |
| 262 | + original_state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] |
| 263 | + return convert_ldm_vae_checkpoint(original_state_dict, vae_config) |
| 264 | + |
| 265 | + |
| 266 | +def main(args): |
| 267 | + """ |
| 268 | + Main function to convert CogView4 checkpoints to Diffusers format. |
| 269 | +
|
| 270 | + Args: |
| 271 | + args (argparse.Namespace): Parsed command-line arguments. |
| 272 | + """ |
| 273 | + # Determine the desired data type |
| 274 | + if args.dtype == "fp16": |
| 275 | + dtype = torch.float16 |
| 276 | + elif args.dtype == "bf16": |
| 277 | + dtype = torch.bfloat16 |
| 278 | + elif args.dtype == "fp32": |
| 279 | + dtype = torch.float32 |
| 280 | + else: |
| 281 | + raise ValueError(f"Unsupported dtype: {args.dtype}") |
| 282 | + |
| 283 | + transformer = None |
| 284 | + vae = None |
| 285 | + |
| 286 | + # Convert Transformer checkpoint if provided |
| 287 | + if args.transformer_checkpoint_path is not None: |
| 288 | + converted_transformer_state_dict = convert_megatron_transformer_checkpoint_to_diffusers( |
| 289 | + ckpt_path=args.transformer_checkpoint_path, |
| 290 | + num_layers=args.num_layers, |
| 291 | + num_heads=args.num_heads, |
| 292 | + hidden_size=args.hidden_size, |
| 293 | + ) |
| 294 | + transformer = CogView4Transformer2DModel( |
| 295 | + patch_size=2, |
| 296 | + in_channels=16, |
| 297 | + num_layers=args.num_layers, |
| 298 | + attention_head_dim=args.attention_head_dim, |
| 299 | + num_attention_heads=args.num_heads, |
| 300 | + out_channels=16, |
| 301 | + text_embed_dim=args.hidden_size, |
| 302 | + time_embed_dim=args.time_embed_dim, |
| 303 | + condition_dim=args.condition_dim, |
| 304 | + pos_embed_max_size=args.pos_embed_max_size, |
| 305 | + ) |
| 306 | + |
| 307 | + transformer.load_state_dict(converted_transformer_state_dict, strict=True) |
| 308 | + |
| 309 | + # Convert to the specified dtype |
| 310 | + if dtype is not None: |
| 311 | + transformer = transformer.to(dtype=dtype) |
| 312 | + |
| 313 | + # Convert VAE checkpoint if provided |
| 314 | + if args.vae_checkpoint_path is not None: |
| 315 | + vae_config = { |
| 316 | + "in_channels": 3, |
| 317 | + "out_channels": 3, |
| 318 | + "down_block_types": ("DownEncoderBlock2D",) * 4, |
| 319 | + "up_block_types": ("UpDecoderBlock2D",) * 4, |
| 320 | + "block_out_channels": (128, 512, 1024, 1024), |
| 321 | + "layers_per_block": 3, |
| 322 | + "act_fn": "silu", |
| 323 | + "latent_channels": 16, |
| 324 | + "norm_num_groups": 32, |
| 325 | + "sample_size": 1024, |
| 326 | + "scaling_factor": 1.0, |
| 327 | + "force_upcast": True, |
| 328 | + "use_quant_conv": False, |
| 329 | + "use_post_quant_conv": False, |
| 330 | + "mid_block_add_attention": False, |
| 331 | + } |
| 332 | + converted_vae_state_dict = convert_cogview4_vae_checkpoint_to_diffusers(args.vae_checkpoint_path, vae_config) |
| 333 | + vae = AutoencoderKL(**vae_config) |
| 334 | + vae.load_state_dict(converted_vae_state_dict, strict=True) |
| 335 | + if dtype is not None: |
| 336 | + vae = vae.to(dtype=dtype) |
| 337 | + |
| 338 | + # Load the text encoder and tokenizer |
| 339 | + text_encoder_id = "/share/home/zyx/Models/glm-4-9b-hf" |
| 340 | + tokenizer = PreTrainedTokenizerFast.from_pretrained(text_encoder_id) |
| 341 | + text_encoder = GlmForCausalLM.from_pretrained( |
| 342 | + text_encoder_id, |
| 343 | + cache_dir=args.text_encoder_cache_dir, |
| 344 | + torch_dtype=torch.bfloat16 if args.dtype == "bf16" else torch.float32, |
| 345 | + ) |
| 346 | + for param in text_encoder.parameters(): |
| 347 | + param.data = param.data.contiguous() |
| 348 | + |
| 349 | + # Initialize the scheduler |
| 350 | + scheduler = CogView4DDIMScheduler.from_config( |
| 351 | + { |
| 352 | + "shift_scale": 1.0, |
| 353 | + "beta_end": 0.012, |
| 354 | + "beta_schedule": "scaled_linear", |
| 355 | + "beta_start": 0.00085, |
| 356 | + "clip_sample": False, |
| 357 | + "num_train_timesteps": 1000, |
| 358 | + "prediction_type": "v_prediction", |
| 359 | + "rescale_betas_zero_snr": True, |
| 360 | + "set_alpha_to_one": True, |
| 361 | + "timestep_spacing": "linspace", |
| 362 | + } |
| 363 | + ) |
| 364 | + |
| 365 | + # Create the pipeline |
| 366 | + pipe = CogView4Pipeline( |
| 367 | + tokenizer=tokenizer, |
| 368 | + text_encoder=text_encoder, |
| 369 | + vae=vae, |
| 370 | + transformer=transformer, |
| 371 | + scheduler=scheduler, |
| 372 | + ) |
| 373 | + |
| 374 | + # Save the converted pipeline |
| 375 | + pipe.save_pretrained( |
| 376 | + args.output_path, |
| 377 | + safe_serialization=True, |
| 378 | + max_shard_size="5GB", |
| 379 | + push_to_hub=args.push_to_hub, |
| 380 | + ) |
| 381 | + |
| 382 | + |
| 383 | +if __name__ == "__main__": |
| 384 | + main(args) |
0 commit comments