|
| 1 | +# Copyright 2024 The HuggingFace Team. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import inspect |
| 16 | +import unittest |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +import torch |
| 20 | +from PIL import Image |
| 21 | +from transformers import AutoTokenizer, T5EncoderModel |
| 22 | + |
| 23 | +from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel, DDIMScheduler |
| 24 | +from diffusers.utils.testing_utils import ( |
| 25 | + enable_full_determinism, |
| 26 | + torch_device, |
| 27 | +) |
| 28 | + |
| 29 | +from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
| 30 | +from ..test_pipelines_common import ( |
| 31 | + PipelineTesterMixin, |
| 32 | + check_qkv_fusion_matches_attn_procs_length, |
| 33 | + check_qkv_fusion_processors_exist, |
| 34 | + to_np, |
| 35 | +) |
| 36 | + |
| 37 | + |
| 38 | +enable_full_determinism() |
| 39 | + |
| 40 | + |
| 41 | +class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
| 42 | + pipeline_class = CogVideoXImageToVideoPipeline |
| 43 | + params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
| 44 | + batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"image"}) |
| 45 | + image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
| 46 | + image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
| 47 | + required_optional_params = frozenset( |
| 48 | + [ |
| 49 | + "num_inference_steps", |
| 50 | + "generator", |
| 51 | + "latents", |
| 52 | + "return_dict", |
| 53 | + "callback_on_step_end", |
| 54 | + "callback_on_step_end_tensor_inputs", |
| 55 | + ] |
| 56 | + ) |
| 57 | + |
| 58 | + def get_dummy_components(self): |
| 59 | + torch.manual_seed(0) |
| 60 | + transformer = CogVideoXTransformer3DModel( |
| 61 | + # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings |
| 62 | + # But, since we are using tiny-random-t5 here, we need the internal dim of CogVideoXTransformer3DModel |
| 63 | + # to be 32. The internal dim is product of num_attention_heads and attention_head_dim |
| 64 | + num_attention_heads=4, |
| 65 | + attention_head_dim=8, |
| 66 | + in_channels=8, |
| 67 | + out_channels=4, |
| 68 | + time_embed_dim=2, |
| 69 | + text_embed_dim=32, # Must match with tiny-random-t5 |
| 70 | + num_layers=1, |
| 71 | + sample_width=16, # latent width: 2 -> final width: 16 |
| 72 | + sample_height=16, # latent height: 2 -> final height: 16 |
| 73 | + sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9 |
| 74 | + patch_size=2, |
| 75 | + temporal_compression_ratio=4, |
| 76 | + max_text_seq_length=16, |
| 77 | + ) |
| 78 | + |
| 79 | + torch.manual_seed(0) |
| 80 | + vae = AutoencoderKLCogVideoX( |
| 81 | + in_channels=3, |
| 82 | + out_channels=3, |
| 83 | + down_block_types=( |
| 84 | + "CogVideoXDownBlock3D", |
| 85 | + "CogVideoXDownBlock3D", |
| 86 | + "CogVideoXDownBlock3D", |
| 87 | + "CogVideoXDownBlock3D", |
| 88 | + ), |
| 89 | + up_block_types=( |
| 90 | + "CogVideoXUpBlock3D", |
| 91 | + "CogVideoXUpBlock3D", |
| 92 | + "CogVideoXUpBlock3D", |
| 93 | + "CogVideoXUpBlock3D", |
| 94 | + ), |
| 95 | + block_out_channels=(8, 8, 8, 8), |
| 96 | + latent_channels=4, |
| 97 | + layers_per_block=1, |
| 98 | + norm_num_groups=2, |
| 99 | + temporal_compression_ratio=4, |
| 100 | + ) |
| 101 | + |
| 102 | + torch.manual_seed(0) |
| 103 | + scheduler = DDIMScheduler() |
| 104 | + text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
| 105 | + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
| 106 | + |
| 107 | + components = { |
| 108 | + "transformer": transformer, |
| 109 | + "vae": vae, |
| 110 | + "scheduler": scheduler, |
| 111 | + "text_encoder": text_encoder, |
| 112 | + "tokenizer": tokenizer, |
| 113 | + } |
| 114 | + return components |
| 115 | + |
| 116 | + def get_dummy_inputs(self, device, seed=0): |
| 117 | + if str(device).startswith("mps"): |
| 118 | + generator = torch.manual_seed(seed) |
| 119 | + else: |
| 120 | + generator = torch.Generator(device=device).manual_seed(seed) |
| 121 | + |
| 122 | + # Cannot reduce because convolution kernel becomes bigger than sample |
| 123 | + image_height = 16 |
| 124 | + image_width = 16 |
| 125 | + image = Image.new("RGB", (image_width, image_height)) |
| 126 | + inputs = { |
| 127 | + "image": image, |
| 128 | + "prompt": "dance monkey", |
| 129 | + "negative_prompt": "", |
| 130 | + "generator": generator, |
| 131 | + "num_inference_steps": 2, |
| 132 | + "guidance_scale": 6.0, |
| 133 | + "height": image_height, |
| 134 | + "width": image_width, |
| 135 | + "num_frames": 8, |
| 136 | + "max_sequence_length": 16, |
| 137 | + "output_type": "pt", |
| 138 | + } |
| 139 | + return inputs |
| 140 | + |
| 141 | + def test_inference(self): |
| 142 | + device = "cpu" |
| 143 | + |
| 144 | + components = self.get_dummy_components() |
| 145 | + pipe = self.pipeline_class(**components) |
| 146 | + pipe.to(device) |
| 147 | + pipe.set_progress_bar_config(disable=None) |
| 148 | + |
| 149 | + inputs = self.get_dummy_inputs(device) |
| 150 | + video = pipe(**inputs).frames |
| 151 | + generated_video = video[0] |
| 152 | + |
| 153 | + self.assertEqual(generated_video.shape, (8, 3, 16, 16)) |
| 154 | + expected_video = torch.randn(8, 3, 16, 16) |
| 155 | + max_diff = np.abs(generated_video - expected_video).max() |
| 156 | + self.assertLessEqual(max_diff, 1e10) |
| 157 | + |
| 158 | + def test_callback_inputs(self): |
| 159 | + sig = inspect.signature(self.pipeline_class.__call__) |
| 160 | + has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
| 161 | + has_callback_step_end = "callback_on_step_end" in sig.parameters |
| 162 | + |
| 163 | + if not (has_callback_tensor_inputs and has_callback_step_end): |
| 164 | + return |
| 165 | + |
| 166 | + components = self.get_dummy_components() |
| 167 | + pipe = self.pipeline_class(**components) |
| 168 | + pipe = pipe.to(torch_device) |
| 169 | + pipe.set_progress_bar_config(disable=None) |
| 170 | + self.assertTrue( |
| 171 | + hasattr(pipe, "_callback_tensor_inputs"), |
| 172 | + f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
| 173 | + ) |
| 174 | + |
| 175 | + def callback_inputs_subset(pipe, i, t, callback_kwargs): |
| 176 | + # iterate over callback args |
| 177 | + for tensor_name, tensor_value in callback_kwargs.items(): |
| 178 | + # check that we're only passing in allowed tensor inputs |
| 179 | + assert tensor_name in pipe._callback_tensor_inputs |
| 180 | + |
| 181 | + return callback_kwargs |
| 182 | + |
| 183 | + def callback_inputs_all(pipe, i, t, callback_kwargs): |
| 184 | + for tensor_name in pipe._callback_tensor_inputs: |
| 185 | + assert tensor_name in callback_kwargs |
| 186 | + |
| 187 | + # iterate over callback args |
| 188 | + for tensor_name, tensor_value in callback_kwargs.items(): |
| 189 | + # check that we're only passing in allowed tensor inputs |
| 190 | + assert tensor_name in pipe._callback_tensor_inputs |
| 191 | + |
| 192 | + return callback_kwargs |
| 193 | + |
| 194 | + inputs = self.get_dummy_inputs(torch_device) |
| 195 | + |
| 196 | + # Test passing in a subset |
| 197 | + inputs["callback_on_step_end"] = callback_inputs_subset |
| 198 | + inputs["callback_on_step_end_tensor_inputs"] = ["latents"] |
| 199 | + output = pipe(**inputs)[0] |
| 200 | + |
| 201 | + # Test passing in a everything |
| 202 | + inputs["callback_on_step_end"] = callback_inputs_all |
| 203 | + inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
| 204 | + output = pipe(**inputs)[0] |
| 205 | + |
| 206 | + def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): |
| 207 | + is_last = i == (pipe.num_timesteps - 1) |
| 208 | + if is_last: |
| 209 | + callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
| 210 | + return callback_kwargs |
| 211 | + |
| 212 | + inputs["callback_on_step_end"] = callback_inputs_change_tensor |
| 213 | + inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
| 214 | + output = pipe(**inputs)[0] |
| 215 | + assert output.abs().sum() < 1e10 |
| 216 | + |
| 217 | + def test_inference_batch_single_identical(self): |
| 218 | + self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) |
| 219 | + |
| 220 | + def test_attention_slicing_forward_pass( |
| 221 | + self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 |
| 222 | + ): |
| 223 | + if not self.test_attention_slicing: |
| 224 | + return |
| 225 | + |
| 226 | + components = self.get_dummy_components() |
| 227 | + pipe = self.pipeline_class(**components) |
| 228 | + for component in pipe.components.values(): |
| 229 | + if hasattr(component, "set_default_attn_processor"): |
| 230 | + component.set_default_attn_processor() |
| 231 | + pipe.to(torch_device) |
| 232 | + pipe.set_progress_bar_config(disable=None) |
| 233 | + |
| 234 | + generator_device = "cpu" |
| 235 | + inputs = self.get_dummy_inputs(generator_device) |
| 236 | + output_without_slicing = pipe(**inputs)[0] |
| 237 | + |
| 238 | + pipe.enable_attention_slicing(slice_size=1) |
| 239 | + inputs = self.get_dummy_inputs(generator_device) |
| 240 | + output_with_slicing1 = pipe(**inputs)[0] |
| 241 | + |
| 242 | + pipe.enable_attention_slicing(slice_size=2) |
| 243 | + inputs = self.get_dummy_inputs(generator_device) |
| 244 | + output_with_slicing2 = pipe(**inputs)[0] |
| 245 | + |
| 246 | + if test_max_difference: |
| 247 | + max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() |
| 248 | + max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() |
| 249 | + self.assertLess( |
| 250 | + max(max_diff1, max_diff2), |
| 251 | + expected_max_diff, |
| 252 | + "Attention slicing should not affect the inference results", |
| 253 | + ) |
| 254 | + |
| 255 | + def test_vae_tiling(self, expected_diff_max: float = 0.3): |
| 256 | + # Note(aryan): Investigate why this needs a bit higher tolerance |
| 257 | + generator_device = "cpu" |
| 258 | + components = self.get_dummy_components() |
| 259 | + |
| 260 | + pipe = self.pipeline_class(**components) |
| 261 | + pipe.to("cpu") |
| 262 | + pipe.set_progress_bar_config(disable=None) |
| 263 | + |
| 264 | + # Without tiling |
| 265 | + inputs = self.get_dummy_inputs(generator_device) |
| 266 | + inputs["height"] = inputs["width"] = 128 |
| 267 | + output_without_tiling = pipe(**inputs)[0] |
| 268 | + |
| 269 | + # With tiling |
| 270 | + pipe.vae.enable_tiling( |
| 271 | + tile_sample_min_height=96, |
| 272 | + tile_sample_min_width=96, |
| 273 | + tile_overlap_factor_height=1 / 12, |
| 274 | + tile_overlap_factor_width=1 / 12, |
| 275 | + ) |
| 276 | + inputs = self.get_dummy_inputs(generator_device) |
| 277 | + inputs["height"] = inputs["width"] = 128 |
| 278 | + output_with_tiling = pipe(**inputs)[0] |
| 279 | + |
| 280 | + self.assertLess( |
| 281 | + (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), |
| 282 | + expected_diff_max, |
| 283 | + "VAE tiling should not affect the inference results", |
| 284 | + ) |
| 285 | + |
| 286 | + @unittest.skip("xformers attention processor does not exist for CogVideoX") |
| 287 | + def test_xformers_attention_forwardGenerator_pass(self): |
| 288 | + pass |
| 289 | + |
| 290 | + def test_fused_qkv_projections(self): |
| 291 | + device = "cpu" # ensure determinism for the device-dependent torch.Generator |
| 292 | + components = self.get_dummy_components() |
| 293 | + pipe = self.pipeline_class(**components) |
| 294 | + pipe = pipe.to(device) |
| 295 | + pipe.set_progress_bar_config(disable=None) |
| 296 | + |
| 297 | + inputs = self.get_dummy_inputs(device) |
| 298 | + frames = pipe(**inputs).frames # [B, F, C, H, W] |
| 299 | + original_image_slice = frames[0, -2:, -1, -3:, -3:] |
| 300 | + |
| 301 | + pipe.fuse_qkv_projections() |
| 302 | + assert check_qkv_fusion_processors_exist( |
| 303 | + pipe.transformer |
| 304 | + ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." |
| 305 | + assert check_qkv_fusion_matches_attn_procs_length( |
| 306 | + pipe.transformer, pipe.transformer.original_attn_processors |
| 307 | + ), "Something wrong with the attention processors concerning the fused QKV projections." |
| 308 | + |
| 309 | + inputs = self.get_dummy_inputs(device) |
| 310 | + frames = pipe(**inputs).frames |
| 311 | + image_slice_fused = frames[0, -2:, -1, -3:, -3:] |
| 312 | + |
| 313 | + pipe.transformer.unfuse_qkv_projections() |
| 314 | + inputs = self.get_dummy_inputs(device) |
| 315 | + frames = pipe(**inputs).frames |
| 316 | + image_slice_disabled = frames[0, -2:, -1, -3:, -3:] |
| 317 | + |
| 318 | + assert np.allclose( |
| 319 | + original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 |
| 320 | + ), "Fusion of QKV projections shouldn't affect the outputs." |
| 321 | + assert np.allclose( |
| 322 | + image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 |
| 323 | + ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
| 324 | + assert np.allclose( |
| 325 | + original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
| 326 | + ), "Original outputs should match when fused QKV projections are disabled." |
0 commit comments