Skip to content

Commit 824feef

Browse files
committed
rife
1 parent 628f736 commit 824feef

File tree

1 file changed

+64
-18
lines changed

1 file changed

+64
-18
lines changed

inference/gradio_composite_demo/rife_model.py

Lines changed: 64 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,10 @@
88
import logging
99
import skvideo.io
1010
from rife.RIFE_HDv3 import Model
11+
from huggingface_hub import hf_hub_download, snapshot_download
1112

1213
logger = logging.getLogger(__name__)
14+
1315
device = "cuda" if torch.cuda.is_available() else "cpu"
1416

1517

@@ -18,8 +20,9 @@ def pad_image(img, scale):
1820
tmp = max(32, int(32 / scale))
1921
ph = ((h - 1) // tmp + 1) * tmp
2022
pw = ((w - 1) // tmp + 1) * tmp
21-
padding = (0, 0, pw - w, ph - h)
22-
return F.pad(img, padding)
23+
padding = (0, pw - w, 0, ph - h)
24+
25+
return F.pad(img, padding), padding
2326

2427

2528
def make_inference(model, I0, I1, upscale_amount, n):
@@ -36,31 +39,49 @@ def make_inference(model, I0, I1, upscale_amount, n):
3639

3740
@torch.inference_mode()
3841
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
39-
42+
print(f"samples dtype:{samples.dtype}")
43+
print(f"samples shape:{samples.shape}")
4044
output = []
45+
pbar = utils.ProgressBar(samples.shape[0], desc="RIFE inference")
4146
# [f, c, h, w]
4247
for b in range(samples.shape[0]):
4348
frame = samples[b : b + 1]
4449
_, _, h, w = frame.shape
50+
4551
I0 = samples[b : b + 1]
4652
I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:]
47-
I1 = pad_image(I1, upscale_amount)
53+
54+
I0, padding = pad_image(I0, upscale_amount)
55+
I0 = I0.to(torch.float)
56+
I1, _ = pad_image(I1, upscale_amount)
57+
I1 = I1.to(torch.float)
58+
4859
# [c, h, w]
4960
I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False)
5061
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
5162

5263
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
5364

5465
if ssim > 0.996:
55-
I1 = I0
56-
I1 = pad_image(I1, upscale_amount)
66+
I1 = samples[b : b + 1]
67+
# print(f'upscale_amount:{upscale_amount}')
68+
# print(f'ssim:{upscale_amount}')
69+
# print(f'I0 shape:{I0.shape}')
70+
# print(f'I1 shape:{I1.shape}')
71+
I1, padding = pad_image(I1, upscale_amount)
72+
# print(f'I0 shape:{I0.shape}')
73+
# print(f'I1 shape:{I1.shape}')
5774
I1 = make_inference(model, I0, I1, upscale_amount, 1)
5875

59-
I1_small = F.interpolate(I1[0], (32, 32), mode="bilinear", align_corners=False)
60-
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
61-
frame = I1[0]
76+
# print(f'I0 shape:{I0.shape}')
77+
# print(f'I1[0] shape:{I1[0].shape}')
6278
I1 = I1[0]
6379

80+
# print(f'I1[0] unpadded shape:{I1.shape}')
81+
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
82+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
83+
frame = I1[padding[0] :, padding[2] :, : -padding[3], padding[1] :]
84+
6485
tmp_output = []
6586
if ssim < 0.2:
6687
for i in range((2**exp) - 1):
@@ -69,10 +90,16 @@ def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_devi
6990
else:
7091
tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else []
7192

72-
frame = pad_image(frame, upscale_amount)
73-
tmp_output = [frame] + tmp_output
74-
for i, frame in enumerate(tmp_output):
75-
output.append(frame.to(output_device))
93+
frame, _ = pad_image(frame, upscale_amount)
94+
# print(f'frame shape:{frame.shape}')
95+
96+
frame = F.interpolate(frame, size=(h, w))
97+
output.append(frame.to(output_device))
98+
for i, tmp_frame in enumerate(tmp_output):
99+
# tmp_frame, _ = pad_image(tmp_frame, upscale_amount)
100+
tmp_frame = F.interpolate(tmp_frame, size=(h, w))
101+
output.append(tmp_frame.to(output_device))
102+
pbar.update(1)
76103
return output
77104

78105

@@ -94,14 +121,24 @@ def frame_generator(video_capture):
94121

95122

96123
def rife_inference_with_path(model, video_path):
124+
# Open the video file
97125
video_capture = cv2.VideoCapture(video_path)
98-
tot_frame = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)
126+
fps = video_capture.get(cv2.CAP_PROP_FPS) # Get the frames per second
127+
tot_frame = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) # Total frames in the video
99128
pt_frame_data = []
100129
pt_frame = skvideo.io.vreader(video_path)
101-
for frame in pt_frame:
102-
pt_frame_data.append(
103-
torch.from_numpy(np.transpose(frame, (2, 0, 1))).to("cpu", non_blocking=True).float() / 255.0
104-
)
130+
# Cyclic reading of the video frames
131+
while video_capture.isOpened():
132+
ret, frame = video_capture.read()
133+
134+
if not ret:
135+
break
136+
137+
# BGR to RGB
138+
frame_rgb = frame[..., ::-1]
139+
frame_rgb = frame_rgb.copy()
140+
tensor = torch.from_numpy(frame_rgb).float().to("cpu", non_blocking=True).float() / 255.0
141+
pt_frame_data.append(tensor.permute(2, 0, 1)) # to [c, h, w,]
105142

106143
pt_frame = torch.from_numpy(np.stack(pt_frame_data))
107144
pt_frame = pt_frame.to(device)
@@ -122,8 +159,17 @@ def rife_inference_with_latents(model, latents):
122159
for i in range(latents.size(0)):
123160
# [f, c, w, h]
124161
latent = latents[i]
162+
125163
frames = ssim_interpolation_rife(model, latent)
126164
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h])
127165
rife_results.append(pt_image)
128166

129167
return torch.stack(rife_results)
168+
169+
170+
if __name__ == "__main__":
171+
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
172+
model = load_rife_model("model_rife")
173+
174+
video_path = rife_inference_with_path(model, "/mnt/ceph/develop/jiawei/CogVideo/output/chunk_3710_1.mp4")
175+
print(video_path)

0 commit comments

Comments
 (0)