Skip to content

Commit 0224a0e

Browse files
committed
resolve syntax highlighting issues
1 parent 4606320 commit 0224a0e

File tree

1 file changed

+13
-21
lines changed

1 file changed

+13
-21
lines changed

README.rst

Lines changed: 13 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
zarr
22
====
33

4-
A minimal implementation of chunked, compressed, N-dimensional arrays for
5-
Python.
4+
A minimal implementation of chunked, compressed, N-dimensional arrays
5+
for Python.
66

77
* Source code: https://github.com/alimanfoo/zarr
88
* Download: https://pypi.python.org/pypi/zarr
@@ -13,8 +13,8 @@ Python.
1313
Installation
1414
------------
1515

16-
Installation requires Numpy and Cython pre-installed. Can only be installed on
17-
Linux currently.
16+
Installation requires Numpy and Cython pre-installed. Can only be
17+
installed on Linux currently.
1818

1919
Install from PyPI::
2020

@@ -27,8 +27,8 @@ Install from GitHub::
2727
Status
2828
------
2929

30-
Experimental, proof-of-concept. This is alpha-quality software. Things may
31-
break, change or disappear without warning.
30+
Experimental, proof-of-concept. This is alpha-quality software. Things
31+
may break, change or disappear without warning.
3232

3333
Bug reports and suggestions welcome.
3434

@@ -44,9 +44,7 @@ Design goals
4444
Usage
4545
-----
4646

47-
Create an array
48-
49-
.. code-block:: python
47+
Create an array::
5048

5149
>>> import numpy as np
5250
>>> import zarr
@@ -56,19 +54,15 @@ Create an array
5654
cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE)
5755
nbytes: 38.1M; cbytes: 0; initialized: 0/100
5856

59-
Fill it with some data
60-
61-
.. code-block:: python
57+
Fill it with some data::
6258

6359
>>> z[:] = np.arange(10000000, dtype='i4').reshape(10000, 1000)
6460
>>> z
6561
zarr.ext.SynchronizedArray((10000, 1000), int32, chunks=(1000, 100))
6662
cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE)
6763
nbytes: 38.1M; cbytes: 2.0M; ratio: 19.3; initialized: 100/100
6864

69-
Obtain a NumPy array by slicing
70-
71-
.. code-block:: python
65+
Obtain a NumPy array by slicing::
7266

7367
>>> z[:]
7468
array([[ 0, 1, 2, ..., 997, 998, 999],
@@ -95,9 +89,7 @@ Obtain a NumPy array by slicing
9589
[9998000, 9998001, 9998002, ..., 9998097, 9998098, 9998099],
9690
[9999000, 9999001, 9999002, ..., 9999097, 9999098, 9999099]], dtype=int32)
9791

98-
Resize the array and add more data
99-
100-
.. code-block:: python
92+
Resize the array and add more data::
10193

10294
>>> z.resize(20000, 1000)
10395
>>> z
@@ -111,10 +103,10 @@ Resize the array and add more data
111103
nbytes: 76.3M; cbytes: 4.0M; ratio: 19.3; initialized: 200/200
112104

113105
For convenience, an ``append()`` method is also available, which can be used to
114-
append data to any axis
115-
116-
.. code-block:: python
106+
append data to any axis:
117107

108+
.. code-block::
109+
118110
>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
119111
>>> z = zarr.array(a, chunks=(1000, 100))
120112
>>> z.append(a+a)

0 commit comments

Comments
 (0)