@@ -18,7 +18,7 @@ Zarr has several functions for creating arrays. For example::
1818 >>> import zarr
1919 >>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4')
2020 >>> z
21- <zarr.core. Array (10000, 10000) int32>
21+ <zarr.Array (10000, 10000) int32>
2222
2323The code above creates a 2-dimensional array of 32-bit integers with 10000 rows
2424and 10000 columns, divided into chunks where each chunk has 1000 rows and 1000
@@ -168,7 +168,7 @@ compression ratio. Zarr arrays provide a ``info`` property which can be used to
168168print some diagnostics, e.g.::
169169
170170 >>> z.info
171- Type : zarr.core. Array
171+ Type : zarr.Array
172172 Data type : int32
173173 Shape : (10000, 10000)
174174 Chunk shape : (1000, 1000)
@@ -260,7 +260,7 @@ Here is an example using a delta filter with the Blosc compressor::
260260 >>> data = np.arange(100000000, dtype='i4').reshape(10000, 10000)
261261 >>> z = zarr.array(data, chunks=(1000, 1000), filters=filters, compressor=compressor)
262262 >>> z.info
263- Type : zarr.core. Array
263+ Type : zarr.Array
264264 Data type : int32
265265 Shape : (10000, 10000)
266266 Chunk shape : (1000, 1000)
@@ -302,15 +302,15 @@ Groups can also contain arrays, e.g.::
302302
303303 >>> z1 = bar.zeros('baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
304304 >>> z1
305- <zarr.core. Array '/foo/bar/baz' (10000, 10000) int32>
305+ <zarr.Array '/foo/bar/baz' (10000, 10000) int32>
306306
307307Arrays are known as "datasets" in HDF5 terminology. For compatibility with h5py,
308308Zarr groups also implement the ``create_dataset() `` and ``require_dataset() ``
309309methods, e.g.::
310310
311311 >>> z = bar.create_dataset('quux', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
312312 >>> z
313- <zarr.core. Array '/foo/bar/quux' (10000, 10000) int32>
313+ <zarr.Array '/foo/bar/quux' (10000, 10000) int32>
314314
315315Members of a group can be accessed via the suffix notation, e.g.::
316316
@@ -323,7 +323,7 @@ call, e.g.::
323323 >>> root['foo/bar']
324324 <zarr.hierarchy.Group '/foo/bar'>
325325 >>> root['foo/bar/baz']
326- <zarr.core. Array '/foo/bar/baz' (10000, 10000) int32>
326+ <zarr.Array '/foo/bar/baz' (10000, 10000) int32>
327327
328328The :func: `zarr.hierarchy.Group.tree ` method can be used to print a tree
329329representation of the hierarchy, e.g.::
@@ -344,7 +344,7 @@ sub-directories, e.g.::
344344 <zarr.hierarchy.Group '/'>
345345 >>> z = root.zeros('foo/bar/baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
346346 >>> z
347- <zarr.core. Array '/foo/bar/baz' (10000, 10000) int32>
347+ <zarr.Array '/foo/bar/baz' (10000, 10000) int32>
348348
349349Groups can be used as context managers (in a ``with `` statement).
350350If the underlying store has a ``close `` method, it will be called on exit.
@@ -388,7 +388,7 @@ property. E.g.::
388388
389389 >>> bar.info
390390 Name : /foo/bar
391- Type : zarr.core. Array
391+ Type : zarr.Array
392392 Data type : int64
393393 Shape : (1000000,)
394394 Chunk shape : (100000,)
@@ -403,7 +403,7 @@ property. E.g.::
403403
404404 >>> baz.info
405405 Name : /foo/baz
406- Type : zarr.core. Array
406+ Type : zarr.Array
407407 Data type : float32
408408 Shape : (1000, 1000)
409409 Chunk shape : (100, 100)
@@ -472,7 +472,7 @@ Note that although this functionality is similar to some of the advanced
472472indexing capabilities available on NumPy arrays and on h5py datasets, **the Zarr
473473API for advanced indexing is different from both NumPy and h5py **, so please
474474read this section carefully. For a complete description of the indexing API,
475- see the documentation for the :class: `zarr.core. Array ` class.
475+ see the documentation for the :class: `zarr.Array ` class.
476476
477477Indexing with coordinate arrays
478478~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -880,10 +880,10 @@ Here is an example using S3Map to read an array created previously::
880880 >>> root = zarr.group(store=store)
881881 >>> z = root['foo/bar/baz']
882882 >>> z
883- <zarr.core. Array '/foo/bar/baz' (21,) |S1>
883+ <zarr.Array '/foo/bar/baz' (21,) |S1>
884884 >>> z.info
885885 Name : /foo/bar/baz
886- Type : zarr.core. Array
886+ Type : zarr.Array
887887 Data type : |S1
888888 Shape : (21,)
889889 Chunk shape : (7,)
@@ -1150,7 +1150,7 @@ your array, then you can use an array with a fixed-length bytes dtype. E.g.::
11501150
11511151 >>> z = zarr.zeros(10, dtype='S6')
11521152 >>> z
1153- <zarr.core. Array (10,) |S6>
1153+ <zarr.Array (10,) |S6>
11541154 >>> z[0] = b'Hello'
11551155 >>> z[1] = b'world!'
11561156 >>> z[:]
@@ -1166,7 +1166,7 @@ A fixed-length unicode dtype is also available, e.g.::
11661166 >>> text_data = greetings * 10000
11671167 >>> z = zarr.array(text_data, dtype='U20')
11681168 >>> z
1169- <zarr.core. Array (120000,) <U20>
1169+ <zarr.Array (120000,) <U20>
11701170 >>> z[:]
11711171 array(['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...,
11721172 'Helló, világ!', 'Zdravo svete!', 'เฮลโลเวิลด์'],
@@ -1182,7 +1182,7 @@ E.g. using ``VLenUTF8``::
11821182 >>> import numcodecs
11831183 >>> z = zarr.array(text_data, dtype=object, object_codec=numcodecs.VLenUTF8())
11841184 >>> z
1185- <zarr.core. Array (120000,) object>
1185+ <zarr.Array (120000,) object>
11861186 >>> z.filters
11871187 [VLenUTF8()]
11881188 >>> z[:]
@@ -1194,7 +1194,7 @@ is a short-hand for ``dtype=object, object_codec=numcodecs.VLenUTF8()``, e.g.::
11941194
11951195 >>> z = zarr.array(text_data, dtype=str)
11961196 >>> z
1197- <zarr.core. Array (120000,) object>
1197+ <zarr.Array (120000,) object>
11981198 >>> z.filters
11991199 [VLenUTF8()]
12001200 >>> z[:]
@@ -1210,7 +1210,7 @@ e.g.::
12101210 >>> bytes_data = [g.encode('utf-8') for g in greetings] * 10000
12111211 >>> z = zarr.array(bytes_data, dtype=bytes)
12121212 >>> z
1213- <zarr.core. Array (120000,) object>
1213+ <zarr.Array (120000,) object>
12141214 >>> z.filters
12151215 [VLenBytes()]
12161216 >>> z[:]
@@ -1225,7 +1225,7 @@ integer. E.g.::
12251225 >>> categorize = numcodecs.Categorize(greetings, dtype=object)
12261226 >>> z = zarr.array(text_data, dtype=object, object_codec=categorize)
12271227 >>> z
1228- <zarr.core. Array (120000,) object>
1228+ <zarr.Array (120000,) object>
12291229 >>> z.filters
12301230 [Categorize(dtype='|O', astype='|u1', labels=['¡Hola mundo!', 'Hej Världen!', 'Servus Woid!', ...])]
12311231 >>> z[:]
@@ -1275,7 +1275,7 @@ and stores the same primitive type (a.k.a. a ragged array), the
12751275
12761276 >>> z = zarr.empty(4, dtype=object, object_codec=numcodecs.VLenArray(int))
12771277 >>> z
1278- <zarr.core. Array (4,) object>
1278+ <zarr.Array (4,) object>
12791279 >>> z.filters
12801280 [VLenArray(dtype='<i8')]
12811281 >>> z[0] = np.array([1, 3, 5])
@@ -1291,7 +1291,7 @@ primitive dtype such as 'i4' or 'f8'. E.g.::
12911291
12921292 >>> z = zarr.empty(4, dtype='array:i8')
12931293 >>> z
1294- <zarr.core. Array (4,) object>
1294+ <zarr.Array (4,) object>
12951295 >>> z.filters
12961296 [VLenArray(dtype='<i8')]
12971297 >>> z[0] = np.array([1, 3, 5])
@@ -1367,7 +1367,7 @@ ratios, depending on the correlation structure within the data. E.g.::
13671367 >>> a = np.arange(100000000, dtype='i4').reshape(10000, 10000).T
13681368 >>> c = zarr.array(a, chunks=(1000, 1000))
13691369 >>> c.info
1370- Type : zarr.core. Array
1370+ Type : zarr.Array
13711371 Data type : int32
13721372 Shape : (10000, 10000)
13731373 Chunk shape : (1000, 1000)
@@ -1381,7 +1381,7 @@ ratios, depending on the correlation structure within the data. E.g.::
13811381 Chunks initialized : 100/100
13821382 >>> f = zarr.array(a, chunks=(1000, 1000), order='F')
13831383 >>> f.info
1384- Type : zarr.core. Array
1384+ Type : zarr.Array
13851385 Data type : int32
13861386 Shape : (10000, 10000)
13871387 Chunk shape : (1000, 1000)
@@ -1549,7 +1549,7 @@ with thread synchronization::
15491549 >>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4',
15501550 ... synchronizer=zarr.ThreadSynchronizer())
15511551 >>> z
1552- <zarr.core. Array (10000, 10000) int32>
1552+ <zarr.Array (10000, 10000) int32>
15531553
15541554This array is safe to read or write within a multi-threaded program.
15551555
@@ -1563,7 +1563,7 @@ some networked file systems). E.g.::
15631563 ... chunks=(1000, 1000), dtype='i4',
15641564 ... synchronizer=synchronizer)
15651565 >>> z
1566- <zarr.core. Array (10000, 10000) int32>
1566+ <zarr.Array (10000, 10000) int32>
15671567
15681568This array is safe to read or write from multiple processes.
15691569
@@ -1631,7 +1631,7 @@ arrays, as long as the units are specified. E.g.::
16311631
16321632 >>> z = zarr.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='M8[D]')
16331633 >>> z
1634- <zarr.core. Array (3,) datetime64[D]>
1634+ <zarr.Array (3,) datetime64[D]>
16351635 >>> z[:]
16361636 array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')
16371637 >>> z[0]
0 commit comments