@@ -20,23 +20,18 @@ pip install -r requirements.txt
2020
2121### Configuration
2222
23- 1 . Ensure Ollama is running with the required models :
23+ 1 . Ensure any Ollama models you want to use are pulled, e.g. :
2424
2525``` bash
26- # For using the default Qwen2 model
2726ollama pull llama3.2-vision:11b
2827ollama pull gemma3:12b
29-
30- # If using other Ollama models in your config, pull those as well
31- # ollama pull llama3:70b
32- # ollama pull dolphin-mixtral:8x7b
3328```
3429
35302 . Set the following environment variables:
3631
3732``` bash
38- MISTRAL_API_KEY=your_mistral_api_key
3933OPENAI_API_KEY=your_openai_api_key
34+ MISTRAL_API_KEY=your_mistral_api_key
4035```
4136
4237## 📌 Usage
@@ -66,9 +61,9 @@ models:
6661 custom_prompt : null # Optional custom prompt for all models
6762 # Either specify individual models (for backward compatibility)
6863 model1 : " llama3.2-vision:11b" # First model for comparison
69- model2 : " gemma3: 12b" # Second model for comparison
64+ model2 : " mistral/pixtral- 12b-2409 " # Second model for comparison
7065 # Or specify multiple models as a list (new approach)
71- models : ["llama3.2-vision:11b", "gemma3: 12b"]
66+ models : ["llama3.2-vision:11b", "mistral/pixtral- 12b-2409 "]
7267 ground_truth_model : " gpt-4o-mini" # Model to use for ground truth when source is "openai"
7368
7469# Ground truth configuration
@@ -130,6 +125,19 @@ For interactive use, the project includes a Streamlit app:
130125streamlit run app.py
131126```
132127
128+ ### Remote Artifact Storage or Running Remotely
129+
130+ For remote artifact storage or running remotely, install the ZenML integrations for your cloud provider.
131+
132+ For example, for AWS, install the AWS integration:
133+
134+ ``` bash
135+ zenml integration install aws -y
136+ zenml integration install s3 -y
137+ ```
138+
139+ And ensure your stack has a remote
140+
133141## 📋 Pipeline Architecture
134142
135143The OCR comparison pipeline consists of the following components:
0 commit comments