Skip to content

Commit 793685d

Browse files
committed
Formatting
1 parent 38b1ad7 commit 793685d

File tree

19 files changed

+60
-65
lines changed

19 files changed

+60
-65
lines changed

credit-scorer/src/steps/deployment/post_run_annex.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ def generate_enhanced_annex_iv_html(
175175
"name", "Credit Scoring Pipeline"
176176
)
177177
pipeline_version = metadata.get("pipeline", {}).get("version", "Unknown")
178-
pipeline_run = metadata.get("pipeline_run", {})
178+
_ = metadata.get("pipeline_run", {})
179179
stack_info = metadata.get("stack", {})
180180
git_info = metadata.get("git_info", {})
181181

floracast/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,3 @@
11
"""FloraCast - ZenML Forecasting Template for DFG."""
22

3-
__version__ = "0.1.0"
3+
__version__ = "0.1.0"

floracast/materializers/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,4 +2,4 @@
22

33
from .tft_materializer import TFTModelMaterializer
44

5-
__all__ = ["TFTModelMaterializer"]
5+
__all__ = ["TFTModelMaterializer"]

floracast/materializers/tft_materializer.py

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,21 +2,22 @@
22
Custom materializer for Darts TFT model objects using io_utils approach.
33
"""
44

5+
import json
56
import os
6-
import tempfile
77
import pickle
8-
import json
9-
import pandas as pd
8+
import tempfile
9+
from typing import Any, Dict, Type
10+
1011
import numpy as np
12+
import pandas as pd
1113
import torch
12-
from typing import Type, Any, Dict
13-
from darts.models import TFTModel
1414
from darts import TimeSeries
15-
from zenml.materializers.base_materializer import BaseMaterializer
15+
from darts.models import TFTModel
1616
from zenml.enums import ArtifactType
17-
from zenml.metadata.metadata_types import MetadataType
1817
from zenml.io import fileio
1918
from zenml.logger import get_logger
19+
from zenml.materializers.base_materializer import BaseMaterializer
20+
from zenml.metadata.metadata_types import MetadataType
2021

2122
logger = get_logger(__name__)
2223

floracast/materializers/timeseries_materializer.py

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -7,26 +7,24 @@
77
- static_covariates.csv (optional): static covariates if present
88
"""
99

10-
import os
1110
import json
11+
import os
1212
import tempfile
1313
from typing import Any, Dict, Type
1414

15-
import pandas as pd
16-
import numpy as np
1715
import matplotlib
16+
import numpy as np
17+
import pandas as pd
1818

1919
# Use a non-interactive backend for headless environments
2020
matplotlib.use("Agg")
2121
import matplotlib.pyplot as plt
22-
2322
from darts import TimeSeries
24-
from zenml.materializers.base_materializer import BaseMaterializer
2523
from zenml.enums import ArtifactType, VisualizationType
26-
from zenml.metadata.metadata_types import MetadataType
2724
from zenml.io import fileio
2825
from zenml.logger import get_logger
29-
26+
from zenml.materializers.base_materializer import BaseMaterializer
27+
from zenml.metadata.metadata_types import MetadataType
3028

3129
logger = get_logger(__name__)
3230

@@ -67,7 +65,7 @@ def load(self, data_type: Type[Any]) -> Any:
6765
time_col = metadata.get("time_col", "time")
6866
value_cols = metadata.get("value_cols")
6967
freq = metadata.get("freq")
70-
time_index_type = metadata.get("time_index_type")
68+
_ = metadata.get("time_index_type")
7169
time_tz = metadata.get("time_tz")
7270
dtypes_map = metadata.get("dtypes") or {}
7371

floracast/pipelines/__init__.py

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,6 @@
11
"""ZenML pipelines for FloraCast."""
22

3-
from .train_forecast_pipeline import train_forecast_pipeline
43
from .batch_inference_pipeline import batch_inference_pipeline
4+
from .train_forecast_pipeline import train_forecast_pipeline
55

6-
__all__ = [
7-
"train_forecast_pipeline",
8-
"batch_inference_pipeline"
9-
]
6+
__all__ = ["train_forecast_pipeline", "batch_inference_pipeline"]

floracast/pipelines/batch_inference_pipeline.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,11 @@
22
Batch inference pipeline for FloraCast forecasting models.
33
"""
44

5+
from steps.batch_infer import batch_inference_predict
6+
from steps.ingest import ingest_data
57
from zenml import pipeline
68
from zenml.logger import get_logger
79

8-
from steps.ingest import ingest_data
9-
from steps.batch_infer import batch_inference_predict
10-
1110
logger = get_logger(__name__)
1211

1312

floracast/pipelines/train_forecast_pipeline.py

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,14 +2,13 @@
22
Training pipeline for FloraCast forecasting models.
33
"""
44

5-
from zenml import pipeline
6-
from zenml.logger import get_logger
7-
5+
from steps.evaluate import evaluate
86
from steps.ingest import ingest_data
97
from steps.preprocess import preprocess_data
10-
from steps.train import train_model
11-
from steps.evaluate import evaluate
128
from steps.promote import promote_model
9+
from steps.train import train_model
10+
from zenml import pipeline
11+
from zenml.logger import get_logger
1312

1413
logger = get_logger(__name__)
1514

floracast/run.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,9 @@
22
Entry point for running FloraCast pipelines using ZenML e2e pattern.
33
"""
44

5-
import click
65
from pathlib import Path
6+
7+
import click
78
from pipelines import batch_inference_pipeline, train_forecast_pipeline
89
from zenml.logger import get_logger
910

floracast/steps/__init__.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,17 @@
11
"""ZenML pipeline steps for FloraCast."""
22

3+
from .batch_infer import batch_inference_predict
4+
from .evaluate import evaluate
35
from .ingest import ingest_data
46
from .preprocess import preprocess_data
5-
from .train import train_model
6-
from .evaluate import evaluate
77
from .promote import promote_model
8-
from .batch_infer import batch_inference_predict
8+
from .train import train_model
99

1010
__all__ = [
1111
"ingest_data",
1212
"preprocess_data",
1313
"train_model",
1414
"evaluate",
1515
"promote_model",
16-
"batch_inference_predict"
17-
]
16+
"batch_inference_predict",
17+
]

0 commit comments

Comments
 (0)