Skip to content

Commit ad09139

Browse files
committed
Update image width to 50% for consistency in README.md
1 parent dd239dc commit ad09139

File tree

1 file changed

+4
-10
lines changed

1 file changed

+4
-10
lines changed

oncoclear/README.md

Lines changed: 4 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ OncoClear is an end-to-end MLOps solution that transforms raw diagnostic measure
88

99
<div align="center">
1010
<br/>
11-
<img alt="OncoClear Pipelines" src=".assets/pipeline_overview.png" width="40%">
11+
<img alt="OncoClear Pipelines" src=".assets/pipeline_overview.png" width="50%">
1212
<br/>
1313
</div>
1414

@@ -32,7 +32,7 @@ The OncoClear project consists of four integrated pipelines:
3232

3333
<div align="center">
3434
<br/>
35-
<img alt="Feature Engineering Pipeline" src=".assets/feature_engineering_pipeline.png" width="40%">
35+
<img alt="Feature Engineering Pipeline" src=".assets/feature_engineering_pipeline.png" width="50%">
3636
<br/>
3737
</div>
3838

@@ -44,7 +44,7 @@ The OncoClear project consists of four integrated pipelines:
4444

4545
<div align="center">
4646
<br/>
47-
<img alt="Training Pipeline" src=".assets/training_pipeline.png" width="40%">
47+
<img alt="Training Pipeline" src=".assets/training_pipeline.png" width="50%">
4848
<br/>
4949
</div>
5050

@@ -55,7 +55,7 @@ The OncoClear project consists of four integrated pipelines:
5555

5656
<div align="center">
5757
<br/>
58-
<img alt="Inference Pipeline" src=".assets/inference_pipeline.png" width="40%">
58+
<img alt="Inference Pipeline" src=".assets/inference_pipeline.png" width="50%">
5959
<br/>
6060
</div>
6161

@@ -386,12 +386,6 @@ OncoClear follows a modular architecture:
386386
└── requirements.txt # Project dependencies
387387
```
388388

389-
<div align="center">
390-
<br/>
391-
<img alt="Project Architecture" src=".assets/project_architecture.png" width="60%">
392-
<br/>
393-
</div>
394-
395389
## 📚 Learn More
396390

397391
For detailed documentation on building MLOps pipelines with ZenML, visit the [ZenML Documentation](https://docs.zenml.io/). In particular, the [Production Guide](https://docs.zenml.io/user-guide/production-guide/) goes into more detail about transitioning pipelines to production in the cloud.

0 commit comments

Comments
 (0)