@@ -85,7 +85,7 @@ to run the pipelines in the correct order. You can run the script with the
8585following command:
8686
8787``` shell
88- python run.py -- rag
88+ python run.py rag
8989```
9090
9191This will run the basic RAG pipeline, which scrapes the ZenML documentation and
@@ -100,7 +100,7 @@ use for the LLM.
100100When you're ready to make the query, run the following command:
101101
102102``` shell
103- python run.py -- query " how do I use a custom materializer inside my own zenml steps? i.e. how do I set it? inside the @step decorator?" --model=gpt4
103+ python run.py query " how do I use a custom materializer inside my own zenml steps? i.e. how do I set it? inside the @step decorator?" --model=gpt4
104104```
105105
106106Alternative options for LLMs to use include:
@@ -119,7 +119,7 @@ this up.
119119To run the evaluation pipeline, you can use the following command:
120120
121121``` shell
122- python run.py -- evaluation
122+ python run.py evaluation
123123```
124124
125125You'll need to have first run the RAG pipeline to have the necessary assets in
@@ -137,7 +137,7 @@ To run the `distilabel` synthetic data generation pipeline, you can use the foll
137137
138138``` shell
139139pip install -r requirements-argilla.txt # special requirements
140- python run.py -- synthetic
140+ python run.py synthetic
141141```
142142
143143You will also need to have set up and connected to an Argilla instance for this
@@ -177,7 +177,7 @@ commands:
177177
178178``` shell
179179pip install -r requirements-argilla.txt # special requirements
180- python run.py -- embeddings
180+ python run.py embeddings
181181```
182182
183183* Credit to Phil Schmid for his [ tutorial on embeddings finetuning with Matryoshka
0 commit comments