|
| 1 | +import concurrent.futures |
1 | 2 | import io |
2 | 3 | import json |
3 | 4 | import logging |
| 5 | +import os |
4 | 6 | import sys |
| 7 | +import time |
5 | 8 | import traceback |
6 | 9 | from collections import defaultdict |
7 | 10 | from dataclasses import dataclass |
@@ -246,59 +249,290 @@ def get_langfuse_scores( |
246 | 249 | return qa_pairs, good_response, bad_response |
247 | 250 |
|
248 | 251 |
|
| 252 | +def process_question_answer_pair( |
| 253 | + question: str, |
| 254 | + old_response: str, |
| 255 | + eval_criteria: str, |
| 256 | + sample_good_response: str, |
| 257 | + sample_bad_response: str, |
| 258 | + langfuse_score_identifier: str, |
| 259 | + prompt: str, |
| 260 | + logger: logging.Logger, |
| 261 | +) -> Optional[Dict[str, Any]]: |
| 262 | + """Process a single question-answer pair for evaluation. |
| 263 | +
|
| 264 | + Args: |
| 265 | + question: The question to evaluate |
| 266 | + old_response: The old response to compare against |
| 267 | + eval_criteria: The criteria for evaluation |
| 268 | + sample_good_response: An example of a good response |
| 269 | + sample_bad_response: An example of a bad response |
| 270 | + langfuse_score_identifier: The identifier for the Langfuse score |
| 271 | + prompt: The prompt to use for generating the new response |
| 272 | + logger: The logger to use for logging |
| 273 | +
|
| 274 | + Returns: |
| 275 | + Optional dictionary containing the evaluation result |
| 276 | + """ |
| 277 | + try: |
| 278 | + # Generate new response using current implementation |
| 279 | + new_response = process_input_with_retrieval( |
| 280 | + input=question, |
| 281 | + prompt=prompt, |
| 282 | + tracing_tags=["evaluation"], |
| 283 | + ) |
| 284 | + |
| 285 | + eval_input = EvaluationInput( |
| 286 | + question=question, |
| 287 | + llm_response=f"OLD RESPONSE:\n{old_response}\n\nNEW RESPONSE:\n{new_response}", |
| 288 | + eval_criteria=eval_criteria, |
| 289 | + sample_good_response=sample_good_response, |
| 290 | + sample_bad_response=sample_bad_response, |
| 291 | + ) |
| 292 | + |
| 293 | + if result := evaluate_single_response(eval_input, logger): |
| 294 | + result.update( |
| 295 | + { |
| 296 | + "experiment_name": langfuse_score_identifier, |
| 297 | + "old_response": old_response, |
| 298 | + "new_response": new_response, |
| 299 | + } |
| 300 | + ) |
| 301 | + return result |
| 302 | + return None |
| 303 | + except Exception as e: |
| 304 | + logger.error(f"Error processing question-answer pair: {e}") |
| 305 | + return None |
| 306 | + |
| 307 | + |
| 308 | +# Default to using 4 workers for parallel processing, but allow overriding via environment variable |
| 309 | +DEFAULT_MAX_WORKERS = 5 |
| 310 | +MAX_WORKERS = int(os.environ.get("EVAL_MAX_WORKERS", DEFAULT_MAX_WORKERS)) |
| 311 | +# Default to using 2 workers for question-answer pairs, but allow overriding via environment variable |
| 312 | +QA_MAX_WORKERS = int(os.environ.get("EVAL_QA_MAX_WORKERS", 4)) |
| 313 | +# Default timeouts (in seconds) |
| 314 | +EVAL_PAIR_TIMEOUT = int(os.environ.get("EVAL_PAIR_TIMEOUT", 600)) # 10 minutes |
| 315 | +QA_PAIR_TIMEOUT = int(os.environ.get("QA_PAIR_TIMEOUT", 300)) # 5 minutes |
| 316 | + |
| 317 | + |
| 318 | +class ProgressTracker: |
| 319 | + """A simple class to track progress of parallel evaluations.""" |
| 320 | + |
| 321 | + def __init__(self, total_pairs: int, total_qa_pairs: Dict[str, int]): |
| 322 | + self.total_pairs = total_pairs |
| 323 | + self.total_qa_pairs = total_qa_pairs |
| 324 | + self.completed_pairs = 0 |
| 325 | + self.completed_qa_pairs = defaultdict(int) |
| 326 | + self.start_time = time.time() |
| 327 | + self.pair_start_times = {} |
| 328 | + |
| 329 | + def start_pair(self, pair_id: str): |
| 330 | + """Mark the start of processing an evaluation pair.""" |
| 331 | + self.pair_start_times[pair_id] = time.time() |
| 332 | + |
| 333 | + def complete_pair(self, pair_id: str, results_count: int): |
| 334 | + """Mark the completion of processing an evaluation pair.""" |
| 335 | + self.completed_pairs += 1 |
| 336 | + duration = time.time() - self.pair_start_times.get( |
| 337 | + pair_id, self.start_time |
| 338 | + ) |
| 339 | + return ( |
| 340 | + f"Completed evaluation pair '{pair_id}' with {results_count} results " |
| 341 | + f"({self.completed_pairs}/{self.total_pairs}, {duration:.1f}s)" |
| 342 | + ) |
| 343 | + |
| 344 | + def complete_qa(self, pair_id: str): |
| 345 | + """Mark the completion of processing a question-answer pair.""" |
| 346 | + self.completed_qa_pairs[pair_id] += 1 |
| 347 | + total = self.total_qa_pairs.get(pair_id, 0) |
| 348 | + completed = self.completed_qa_pairs[pair_id] |
| 349 | + return f"Progress for '{pair_id}': {completed}/{total} ({completed / total * 100:.1f}%)" |
| 350 | + |
| 351 | + def get_overall_progress(self) -> str: |
| 352 | + """Get the overall progress of the evaluation.""" |
| 353 | + elapsed = time.time() - self.start_time |
| 354 | + if self.completed_pairs == 0: |
| 355 | + eta = "unknown" |
| 356 | + else: |
| 357 | + avg_time_per_pair = elapsed / self.completed_pairs |
| 358 | + remaining_pairs = self.total_pairs - self.completed_pairs |
| 359 | + eta_seconds = avg_time_per_pair * remaining_pairs |
| 360 | + eta = f"{eta_seconds:.1f}s" |
| 361 | + |
| 362 | + return ( |
| 363 | + f"Overall progress: {self.completed_pairs}/{self.total_pairs} pairs " |
| 364 | + f"({self.completed_pairs / self.total_pairs * 100:.1f}%), " |
| 365 | + f"elapsed: {elapsed:.1f}s, ETA: {eta}" |
| 366 | + ) |
| 367 | + |
| 368 | + |
| 369 | +def process_evaluation_pair( |
| 370 | + pair: Dict[str, str], |
| 371 | + prompt: str, |
| 372 | + logger: logging.Logger, |
| 373 | + progress_tracker: Optional[ProgressTracker] = None, |
| 374 | +) -> List[Dict[str, Any]]: |
| 375 | + """Process a single evaluation pair. |
| 376 | +
|
| 377 | + Args: |
| 378 | + pair: The evaluation pair to process |
| 379 | + prompt: The prompt to use for generating the new response |
| 380 | + logger: The logger to use for logging |
| 381 | + progress_tracker: Optional progress tracker |
| 382 | +
|
| 383 | + Returns: |
| 384 | + List of evaluation results |
| 385 | + """ |
| 386 | + results = [] |
| 387 | + langfuse_score_identifier = pair["langfuse_score_identifier"] |
| 388 | + eval_criteria = pair["eval_criteria"] |
| 389 | + |
| 390 | + try: |
| 391 | + langfuse_score_data, sample_good_response, sample_bad_response = ( |
| 392 | + get_langfuse_scores(langfuse_score_identifier) |
| 393 | + ) |
| 394 | + |
| 395 | + if progress_tracker: |
| 396 | + progress_tracker.start_pair(langfuse_score_identifier) |
| 397 | + |
| 398 | + logger.info( |
| 399 | + f"Processing {len(langfuse_score_data)} question-answer pairs for '{langfuse_score_identifier}' with {QA_MAX_WORKERS} workers" |
| 400 | + ) |
| 401 | + |
| 402 | + # Process each question-answer pair in parallel |
| 403 | + with concurrent.futures.ThreadPoolExecutor( |
| 404 | + max_workers=QA_MAX_WORKERS |
| 405 | + ) as executor: |
| 406 | + futures = {} |
| 407 | + for data in langfuse_score_data: |
| 408 | + question = data["question"] |
| 409 | + old_response = data["old_response"] |
| 410 | + |
| 411 | + future = executor.submit( |
| 412 | + process_question_answer_pair, |
| 413 | + question, |
| 414 | + old_response, |
| 415 | + eval_criteria, |
| 416 | + sample_good_response, |
| 417 | + sample_bad_response, |
| 418 | + langfuse_score_identifier, |
| 419 | + prompt, |
| 420 | + logger, |
| 421 | + ) |
| 422 | + futures[future] = question |
| 423 | + |
| 424 | + # Collect results as they complete |
| 425 | + for future in concurrent.futures.as_completed(futures): |
| 426 | + question = futures[future] |
| 427 | + try: |
| 428 | + # Add timeout to prevent hanging on a single evaluation |
| 429 | + result = future.result(timeout=QA_PAIR_TIMEOUT) |
| 430 | + if result: |
| 431 | + logger.info( |
| 432 | + f"Completed evaluation for question: '{question[:50]}...'" |
| 433 | + ) |
| 434 | + results.append(result) |
| 435 | + else: |
| 436 | + logger.warning( |
| 437 | + f"No result for question: '{question[:50]}...'" |
| 438 | + ) |
| 439 | + except concurrent.futures.TimeoutError: |
| 440 | + logger.error( |
| 441 | + f"Timeout processing question '{question[:50]}...' after {QA_PAIR_TIMEOUT} seconds" |
| 442 | + ) |
| 443 | + except Exception as e: |
| 444 | + logger.error( |
| 445 | + f"Error processing question '{question[:50]}...': {e}" |
| 446 | + ) |
| 447 | + |
| 448 | + # Update progress |
| 449 | + if progress_tracker: |
| 450 | + progress_msg = progress_tracker.complete_qa( |
| 451 | + langfuse_score_identifier |
| 452 | + ) |
| 453 | + logger.info(progress_msg) |
| 454 | + except Exception as e: |
| 455 | + logger.error( |
| 456 | + f"Error processing evaluation pair '{langfuse_score_identifier}': {e}" |
| 457 | + ) |
| 458 | + |
| 459 | + logger.info( |
| 460 | + f"Completed processing '{langfuse_score_identifier}' with {len(results)} results" |
| 461 | + ) |
| 462 | + return results |
| 463 | + |
| 464 | + |
249 | 465 | @step(enable_cache=False) |
250 | 466 | def fast_eval(prompt: str) -> List[Dict[str, Any]]: |
251 | | - """Evaluate LLM responses by comparing old vs new responses. |
| 467 | + """Evaluate LLM responses by comparing old vs new responses in parallel. |
| 468 | +
|
| 469 | + Args: |
| 470 | + prompt: The prompt to use for generating the new response |
252 | 471 |
|
253 | 472 | Returns: |
254 | 473 | List of evaluation results comparing old and new responses |
255 | 474 | """ |
256 | 475 | logger = logging.getLogger(__name__) |
257 | | - results: List[Dict[str, Any]] = [] |
| 476 | + all_results = [] |
258 | 477 |
|
| 478 | + # Initialize progress tracking |
| 479 | + total_qa_pairs = {} |
259 | 480 | for pair in EVALUATION_DATA_PAIRS: |
260 | | - langfuse_score_identifier = pair["langfuse_score_identifier"] |
261 | | - eval_criteria = pair["eval_criteria"] |
| 481 | + try: |
| 482 | + langfuse_score_data, _, _ = get_langfuse_scores( |
| 483 | + pair["langfuse_score_identifier"] |
| 484 | + ) |
| 485 | + total_qa_pairs[pair["langfuse_score_identifier"]] = len( |
| 486 | + langfuse_score_data |
| 487 | + ) |
| 488 | + except Exception: |
| 489 | + total_qa_pairs[pair["langfuse_score_identifier"]] = 0 |
262 | 490 |
|
263 | | - langfuse_score_data, sample_good_response, sample_bad_response = ( |
264 | | - get_langfuse_scores(langfuse_score_identifier) |
265 | | - ) |
| 491 | + progress_tracker = ProgressTracker( |
| 492 | + len(EVALUATION_DATA_PAIRS), total_qa_pairs |
| 493 | + ) |
266 | 494 |
|
267 | | - for data in langfuse_score_data: |
268 | | - question = data["question"] |
269 | | - old_response = data["old_response"] |
| 495 | + logger.info( |
| 496 | + f"Starting parallel evaluation with {MAX_WORKERS} workers for {len(EVALUATION_DATA_PAIRS)} evaluation pairs" |
| 497 | + ) |
270 | 498 |
|
271 | | - # Generate new response using current implementation |
| 499 | + # Process each evaluation pair in parallel |
| 500 | + with concurrent.futures.ThreadPoolExecutor( |
| 501 | + max_workers=MAX_WORKERS |
| 502 | + ) as executor: |
| 503 | + futures = {} |
| 504 | + for pair in EVALUATION_DATA_PAIRS: |
| 505 | + future = executor.submit( |
| 506 | + process_evaluation_pair, pair, prompt, logger, progress_tracker |
| 507 | + ) |
| 508 | + futures[future] = pair["langfuse_score_identifier"] |
| 509 | + |
| 510 | + # Collect results as they complete |
| 511 | + for future in concurrent.futures.as_completed(futures): |
| 512 | + identifier = futures[future] |
272 | 513 | try: |
273 | | - new_response = process_input_with_retrieval( |
274 | | - input=question, |
275 | | - prompt=prompt, |
276 | | - tracing_tags=["evaluation"], |
| 514 | + # Add timeout to prevent hanging on a single evaluation pair |
| 515 | + results = future.result(timeout=EVAL_PAIR_TIMEOUT) |
| 516 | + progress_msg = progress_tracker.complete_pair( |
| 517 | + identifier, len(results) |
| 518 | + ) |
| 519 | + logger.info(progress_msg) |
| 520 | + logger.info(progress_tracker.get_overall_progress()) |
| 521 | + all_results.extend(results) |
| 522 | + except concurrent.futures.TimeoutError: |
| 523 | + logger.error( |
| 524 | + f"Timeout processing evaluation pair '{identifier}' after {EVAL_PAIR_TIMEOUT} seconds" |
277 | 525 | ) |
278 | 526 | except Exception as e: |
279 | | - logger.error(f"Error generating new response: {e}") |
280 | | - continue |
281 | | - |
282 | | - eval_input = EvaluationInput( |
283 | | - question=question, |
284 | | - llm_response=f"OLD RESPONSE:\n{old_response}\n\nNEW RESPONSE:\n{new_response}", |
285 | | - eval_criteria=eval_criteria, |
286 | | - sample_good_response=sample_good_response, |
287 | | - sample_bad_response=sample_bad_response, |
288 | | - ) |
289 | | - |
290 | | - if result := evaluate_single_response(eval_input, logger): |
291 | | - result.update( |
292 | | - { |
293 | | - "experiment_name": langfuse_score_identifier, |
294 | | - "old_response": old_response, |
295 | | - "new_response": new_response, |
296 | | - } |
| 527 | + logger.error( |
| 528 | + f"Error processing evaluation pair '{identifier}': {e}" |
297 | 529 | ) |
298 | | - results.append(result) |
299 | 530 |
|
300 | | - logger.info("All evaluations completed with %d results", len(results)) |
301 | | - return results |
| 531 | + total_time = time.time() - progress_tracker.start_time |
| 532 | + logger.info( |
| 533 | + f"All evaluations completed with {len(all_results)} total results in {total_time:.1f} seconds" |
| 534 | + ) |
| 535 | + return all_results |
302 | 536 |
|
303 | 537 |
|
304 | 538 | @step |
|
0 commit comments