|
| 1 | +//! Incorporating Zephyr's devicetree into Rust. |
| 2 | +//! |
| 3 | +//! Zephyr depends fairly heavily on the devicetree for configuration. The build system reads |
| 4 | +//! multiple DTS files, and coalesces this into a single devicetree. This tree is output in a few |
| 5 | +//! different ways: |
| 6 | +//! |
| 7 | +//! - Canonical DTS. There is a single DTS file (`build/zephyr/zephyr.dts`) that contains the final |
| 8 | +//! tree, but still in DTS format (the DTB file would have information discarded). |
| 9 | +//! |
| 10 | +//! - Generated. The C header `devicetree_generated.h` contains all of the definitions. This isn't |
| 11 | +//! a particularly friendly file to read or parse, but it does have one piece of information that is |
| 12 | +//! not represented anywhere else: the mapping between devicetree nodes and their "ORD" index. The |
| 13 | +//! device nodes in the system are indexed by this number, and we need this in order to be able to |
| 14 | +//! reference the nodes from Rust. |
| 15 | +//! |
| 16 | +//! Beyond the ORD field, it seems easier to deal with the DTS file itself. Parsing is fairly |
| 17 | +//! straightforward, as it is a subset of the DTS format, and we only have to be able to deal with |
| 18 | +//! the files that are generated by the Zephyr build process. |
| 19 | +
|
| 20 | +// TODO: Turn this off. |
| 21 | +#![allow(dead_code)] |
| 22 | + |
| 23 | +use ordmap::OrdMap; |
| 24 | +use std::{cell::RefCell, collections::BTreeMap, path::Path, rc::Rc}; |
| 25 | + |
| 26 | +mod augment; |
| 27 | +mod ordmap; |
| 28 | +mod output; |
| 29 | +mod parse; |
| 30 | + |
| 31 | +pub struct DeviceTree { |
| 32 | + /// The root of the tree. |
| 33 | + root: Rc<Node>, |
| 34 | + /// All of the labels. |
| 35 | + labels: BTreeMap<String, Rc<Node>>, |
| 36 | +} |
| 37 | + |
| 38 | +// This is a single node in the devicetree. |
| 39 | +pub struct Node { |
| 40 | + // The name of the node itself. |
| 41 | + name: String, |
| 42 | + // The full path of this node in the tree. |
| 43 | + path: String, |
| 44 | + // The "route" is the path, but still as separate entries. |
| 45 | + route: Vec<String>, |
| 46 | + // The ord index in this particular Zephyr build. |
| 47 | + ord: usize, |
| 48 | + // Labels attached to this node. |
| 49 | + labels: Vec<String>, |
| 50 | + // Any properties set in this node. |
| 51 | + properties: Vec<Property>, |
| 52 | + // Children nodes. |
| 53 | + children: Vec<Rc<Node>>, |
| 54 | + // The parent. Should be non-null except at the root node. |
| 55 | + parent: RefCell<Option<Rc<Node>>>, |
| 56 | +} |
| 57 | + |
| 58 | +#[derive(Debug)] |
| 59 | +pub struct Property { |
| 60 | + pub name: String, |
| 61 | + pub value: Vec<Value>, |
| 62 | +} |
| 63 | + |
| 64 | +// Although the real device flattends all of these into bytes, Zephyr takes advantage of them at a |
| 65 | +// slightly higher level. |
| 66 | +#[derive(Debug)] |
| 67 | +pub enum Value { |
| 68 | + Words(Vec<Word>), |
| 69 | + Bytes(Vec<u8>), |
| 70 | + Phandle(Phandle), // TODO |
| 71 | + String(String), |
| 72 | +} |
| 73 | + |
| 74 | +/// A phandle is a named reference to a labeled part of the DT. We resolve this by making the |
| 75 | +/// reference optional, and filling them in afterwards. |
| 76 | +pub struct Phandle { |
| 77 | + /// The label of our target. Keep this because it may be useful to know which label was used, |
| 78 | + /// as nodes often have multiple labels. |
| 79 | + name: String, |
| 80 | + /// The inside of the node, inner mutability so this can be looked up and cached. |
| 81 | + node: RefCell<Option<Rc<Node>>>, |
| 82 | +} |
| 83 | + |
| 84 | +#[derive(Debug)] |
| 85 | +pub enum Word { |
| 86 | + Number(u32), |
| 87 | + Phandle(Phandle), |
| 88 | +} |
| 89 | + |
| 90 | +impl DeviceTree { |
| 91 | + /// Decode the zephyr.dts and devicetree_generated.h files from the build and build an internal |
| 92 | + /// representation of the devicetree itself. |
| 93 | + pub fn new<P1: AsRef<Path>, P2: AsRef<Path>>(dts_path: P1, dt_gen: P2) -> DeviceTree { |
| 94 | + let ords = OrdMap::new(dt_gen); |
| 95 | + |
| 96 | + let dts = std::fs::read_to_string(dts_path) |
| 97 | + .expect("Reading zephyr.dts file"); |
| 98 | + let dt = parse::parse(&dts, &ords); |
| 99 | + dt.resolve_phandles(); |
| 100 | + dt.set_parents(); |
| 101 | + dt |
| 102 | + } |
| 103 | + |
| 104 | + /// Walk the node tree, fixing any phandles to include their reference. |
| 105 | + fn resolve_phandles(&self) { |
| 106 | + self.root.phandle_walk(&self.labels); |
| 107 | + } |
| 108 | + |
| 109 | + /// Walk the node tree, setting each node's parent appropriately. |
| 110 | + fn set_parents(&self) { |
| 111 | + self.root.parent_walk(); |
| 112 | + } |
| 113 | +} |
| 114 | + |
| 115 | +impl Node { |
| 116 | + fn phandle_walk(&self, labels: &BTreeMap<String, Rc<Node>>) { |
| 117 | + for prop in &self.properties { |
| 118 | + for value in &prop.value { |
| 119 | + value.phandle_walk(labels); |
| 120 | + } |
| 121 | + } |
| 122 | + for child in &self.children { |
| 123 | + child.phandle_walk(labels); |
| 124 | + } |
| 125 | + } |
| 126 | + |
| 127 | + fn parent_walk(self: &Rc<Self>) { |
| 128 | + // *(self.parent.borrow_mut()) = Some(parent.clone()); |
| 129 | + |
| 130 | + for child in &self.children { |
| 131 | + *(child.parent.borrow_mut()) = Some(self.clone()); |
| 132 | + child.parent_walk() |
| 133 | + } |
| 134 | + } |
| 135 | + |
| 136 | + fn is_compatible(&self, name: &str) -> bool { |
| 137 | + if let Some(prop) = self.properties.iter().find(|p| p.name == "compatible") { |
| 138 | + prop.value.iter().any(|v| { |
| 139 | + match v { |
| 140 | + Value::String(vn) if name == vn => true, |
| 141 | + _ => false, |
| 142 | + } |
| 143 | + }) |
| 144 | + } else { |
| 145 | + // If there is no compatible field, we are clearly not compatible. |
| 146 | + false |
| 147 | + } |
| 148 | + } |
| 149 | + |
| 150 | + /// A richer compatible test. Walks a series of names, in reverse. Any that are "Some(x)" must |
| 151 | + /// be compatible with "x" at that level. |
| 152 | + fn compatible_path(&self, path: &[Option<&str>]) -> bool { |
| 153 | + let res = self.path_walk(path, 0); |
| 154 | + // println!("compatible? {}: {} {:?}", res, self.path, path); |
| 155 | + res |
| 156 | + } |
| 157 | + |
| 158 | + /// Recursive path walk, to make borrowing simpler. |
| 159 | + fn path_walk(&self, path: &[Option<&str>], pos: usize) -> bool { |
| 160 | + if pos >= path.len() { |
| 161 | + // Once past the end, we consider everything a match. |
| 162 | + return true; |
| 163 | + } |
| 164 | + |
| 165 | + // Check the failure condition, where this node isn't compatible with this section of the path. |
| 166 | + if let Some(name) = path[pos] { |
| 167 | + if !self.is_compatible(name) { |
| 168 | + return false; |
| 169 | + } |
| 170 | + } |
| 171 | + |
| 172 | + // Walk down the tree. We have to check for None here, as we can't recurse on the none |
| 173 | + // case. |
| 174 | + if let Some(child) = self.parent.borrow().as_ref() { |
| 175 | + child.path_walk(path, pos + 1) |
| 176 | + } else { |
| 177 | + // We've run out of nodes, so this is considered not matching. |
| 178 | + false |
| 179 | + } |
| 180 | + } |
| 181 | + |
| 182 | + /// Is the named property present? |
| 183 | + fn has_prop(&self, name: &str) -> bool { |
| 184 | + self.properties.iter().any(|p| p.name == name) |
| 185 | + } |
| 186 | + |
| 187 | + /// Get this property in its entirety. |
| 188 | + fn get_property(&self, name: &str) -> Option<&[Value]> { |
| 189 | + for p in &self.properties { |
| 190 | + if p.name == name { |
| 191 | + return Some(&p.value); |
| 192 | + } |
| 193 | + } |
| 194 | + return None; |
| 195 | + } |
| 196 | + |
| 197 | + /// Attempt to retrieve the named property, as a single entry of Words. |
| 198 | + fn get_words(&self, name: &str) -> Option<&[Word]> { |
| 199 | + self.get_property(name) |
| 200 | + .and_then(|p| { |
| 201 | + match p { |
| 202 | + &[Value::Words(ref w)] => Some(w.as_ref()), |
| 203 | + _ => None, |
| 204 | + } |
| 205 | + }) |
| 206 | + } |
| 207 | + |
| 208 | + /// Get a property that consists of a single number. |
| 209 | + fn get_number(&self, name: &str) -> Option<u32> { |
| 210 | + self.get_words(name) |
| 211 | + .and_then(|p| { |
| 212 | + if let &[Word::Number(n)] = p { |
| 213 | + Some(n) |
| 214 | + } else { |
| 215 | + None |
| 216 | + } |
| 217 | + }) |
| 218 | + } |
| 219 | + |
| 220 | + /// Get a property that consists of multiple numbers. |
| 221 | + fn get_numbers(&self, name: &str) -> Option<Vec<u32>> { |
| 222 | + let mut result = vec![]; |
| 223 | + for word in self.get_words(name)? { |
| 224 | + if let Word::Number(n) = word { |
| 225 | + result.push(*n); |
| 226 | + } else { |
| 227 | + return None; |
| 228 | + } |
| 229 | + } |
| 230 | + Some(result) |
| 231 | + } |
| 232 | + |
| 233 | + /// Get a property that is a single string. |
| 234 | + fn get_single_string(&self, name: &str) -> Option<&str> { |
| 235 | + self.get_property(name) |
| 236 | + .and_then(|p| { |
| 237 | + if let &[Value::String(ref text)] = p { |
| 238 | + Some(text.as_ref()) |
| 239 | + } else { |
| 240 | + None |
| 241 | + } |
| 242 | + }) |
| 243 | + } |
| 244 | +} |
| 245 | + |
| 246 | +impl Value { |
| 247 | + fn phandle_walk(&self, labels: &BTreeMap<String, Rc<Node>>) { |
| 248 | + match self { |
| 249 | + Value::Phandle(ph) => ph.phandle_resolve(labels), |
| 250 | + Value::Words(words) => { |
| 251 | + for w in words { |
| 252 | + match w { |
| 253 | + Word::Phandle(ph) => ph.phandle_resolve(labels), |
| 254 | + _ => (), |
| 255 | + } |
| 256 | + } |
| 257 | + } |
| 258 | + _ => (), |
| 259 | + } |
| 260 | + } |
| 261 | +} |
| 262 | + |
| 263 | +impl Phandle { |
| 264 | + /// Construct a phandle that is unresolved. |
| 265 | + pub fn new(name: String) -> Phandle { |
| 266 | + Phandle { |
| 267 | + name, |
| 268 | + node: RefCell::new(None), |
| 269 | + } |
| 270 | + } |
| 271 | + |
| 272 | + /// Resolve this phandle, with the given label for lookup. |
| 273 | + fn phandle_resolve(&self, labels: &BTreeMap<String, Rc<Node>>) { |
| 274 | + // If already resolve, just return. |
| 275 | + if self.node.borrow().is_some() { |
| 276 | + return; |
| 277 | + } |
| 278 | + |
| 279 | + let node = labels.get(&self.name).cloned() |
| 280 | + .expect("Missing phandle"); |
| 281 | + *self.node.borrow_mut() = Some(node); |
| 282 | + } |
| 283 | + |
| 284 | + /// Get the child node, panicing if it wasn't resolved properly. |
| 285 | + fn node_ref(&self) -> Rc<Node> { |
| 286 | + self.node.borrow().as_ref().unwrap().clone() |
| 287 | + } |
| 288 | +} |
| 289 | + |
| 290 | +impl Word { |
| 291 | + pub fn get_number(&self) -> Option<u32> { |
| 292 | + match self { |
| 293 | + Word::Number(n) => Some(*n), |
| 294 | + _ => None, |
| 295 | + } |
| 296 | + } |
| 297 | +} |
| 298 | + |
| 299 | +// To avoid recursion, the debug printer for Phandle just prints the name. |
| 300 | +impl std::fmt::Debug for Phandle { |
| 301 | + fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result { |
| 302 | + write!(fmt, "Phandle({:?})", self.name) |
| 303 | + } |
| 304 | +} |
0 commit comments