|
| 1 | +/* |
| 2 | + * Copyright (c) 2017 Intel Corporation |
| 3 | + * |
| 4 | + * SPDX-License-Identifier: Apache-2.0 |
| 5 | + */ |
| 6 | + |
| 7 | +#include <tc_util.h> |
| 8 | +#include <kernel.h> |
| 9 | +#include <pthread.h> |
| 10 | + |
| 11 | +#define N_THR 3 |
| 12 | + |
| 13 | +#define BOUNCES 64 |
| 14 | + |
| 15 | +#define STACKSZ 1024 |
| 16 | + |
| 17 | +K_THREAD_STACK_ARRAY_DEFINE(stacks, N_THR, STACKSZ); |
| 18 | + |
| 19 | +void *thread_top(void *p1); |
| 20 | + |
| 21 | +PTHREAD_MUTEX_DEFINE(lock); |
| 22 | + |
| 23 | +PTHREAD_COND_DEFINE(cvar0); |
| 24 | + |
| 25 | +PTHREAD_COND_DEFINE(cvar1); |
| 26 | + |
| 27 | +PTHREAD_BARRIER_DEFINE(barrier, N_THR); |
| 28 | + |
| 29 | +K_SEM_DEFINE(main_sem, 0, 2*N_THR); |
| 30 | + |
| 31 | +static int bounce_failed; |
| 32 | +static int bounce_done[N_THR]; |
| 33 | + |
| 34 | +static int curr_bounce_thread; |
| 35 | + |
| 36 | +static int barrier_failed; |
| 37 | +static int barrier_done[N_THR]; |
| 38 | + |
| 39 | +/* First phase bounces execution between two threads using a condition |
| 40 | + * variable, continuously testing that no other thread is mucking with |
| 41 | + * the protected state. This ends with all threads going back to |
| 42 | + * sleep on the condition variable and being woken by main() for the |
| 43 | + * second phase. |
| 44 | + * |
| 45 | + * Second phase simply lines up all the threads on a barrier, verifies |
| 46 | + * that none run until the last one enters, and that all run after the |
| 47 | + * exit. |
| 48 | + * |
| 49 | + * Test success is signaled to main() using a traditional semaphore. |
| 50 | + */ |
| 51 | + |
| 52 | +void *thread_top(void *p1) |
| 53 | +{ |
| 54 | + int i, j, id = (int) p1; |
| 55 | + int policy; |
| 56 | + struct sched_param schedparam; |
| 57 | + |
| 58 | + pthread_getschedparam(pthread_self(), &policy, &schedparam); |
| 59 | + TC_PRINT("Thread %d starting with scheduling policy %d & priority %d\n", |
| 60 | + id, policy, schedparam.priority); |
| 61 | + /* Try a double-lock here to exercise the failing case of |
| 62 | + * trylock. We don't support RECURSIVE locks, so this is |
| 63 | + * guaranteed to fail. |
| 64 | + */ |
| 65 | + pthread_mutex_lock(&lock); |
| 66 | + |
| 67 | + if (!pthread_mutex_trylock(&lock)) { |
| 68 | + TC_ERROR("pthread_mutex_trylock inexplicably succeeded\n"); |
| 69 | + bounce_failed = 1; |
| 70 | + } |
| 71 | + |
| 72 | + pthread_mutex_unlock(&lock); |
| 73 | + |
| 74 | + for (i = 0; i < BOUNCES; i++) { |
| 75 | + |
| 76 | + pthread_mutex_lock(&lock); |
| 77 | + |
| 78 | + /* Wait for the current owner to signal us, unless we |
| 79 | + * are the very first thread, in which case we need to |
| 80 | + * wait a bit to be sure the other threads get |
| 81 | + * scheduled and wait on cvar0. |
| 82 | + */ |
| 83 | + if (!(id == 0 && i == 0)) { |
| 84 | + pthread_cond_wait(&cvar0, &lock); |
| 85 | + } else { |
| 86 | + pthread_mutex_unlock(&lock); |
| 87 | + usleep(500 * USEC_PER_MSEC); |
| 88 | + pthread_mutex_lock(&lock); |
| 89 | + } |
| 90 | + |
| 91 | + /* Claim ownership, then try really hard to give someone |
| 92 | + * else a shot at hitting this if they are racing. |
| 93 | + */ |
| 94 | + curr_bounce_thread = id; |
| 95 | + for (j = 0; j < 1000; j++) { |
| 96 | + if (curr_bounce_thread != id) { |
| 97 | + TC_ERROR("Racing bounce threads\n"); |
| 98 | + bounce_failed = 1; |
| 99 | + k_sem_give(&main_sem); |
| 100 | + pthread_mutex_unlock(&lock); |
| 101 | + return NULL; |
| 102 | + } |
| 103 | + sched_yield(); |
| 104 | + } |
| 105 | + |
| 106 | + /* Next one's turn, go back to the top and wait. */ |
| 107 | + pthread_cond_signal(&cvar0); |
| 108 | + pthread_mutex_unlock(&lock); |
| 109 | + } |
| 110 | + |
| 111 | + /* Signal we are complete to main(), then let it wake us up. Note |
| 112 | + * that we are using the same mutex with both cvar0 and cvar1, |
| 113 | + * which is non-standard but kosher per POSIX (and it works fine |
| 114 | + * in our implementation |
| 115 | + */ |
| 116 | + pthread_mutex_lock(&lock); |
| 117 | + bounce_done[id] = 1; |
| 118 | + k_sem_give(&main_sem); |
| 119 | + pthread_cond_wait(&cvar1, &lock); |
| 120 | + pthread_mutex_unlock(&lock); |
| 121 | + |
| 122 | + /* Now just wait on the barrier. Make sure no one else finished |
| 123 | + * before we wait on it, then signal that we're done |
| 124 | + */ |
| 125 | + for (i = 0; i < N_THR; i++) { |
| 126 | + if (barrier_done[i]) { |
| 127 | + TC_ERROR("Barrier exited early\n"); |
| 128 | + barrier_failed = 1; |
| 129 | + k_sem_give(&main_sem); |
| 130 | + } |
| 131 | + } |
| 132 | + pthread_barrier_wait(&barrier); |
| 133 | + barrier_done[id] = 1; |
| 134 | + k_sem_give(&main_sem); |
| 135 | + pthread_exit(p1); |
| 136 | + |
| 137 | + return NULL; |
| 138 | +} |
| 139 | + |
| 140 | +int bounce_test_done(void) |
| 141 | +{ |
| 142 | + int i; |
| 143 | + |
| 144 | + if (bounce_failed) { |
| 145 | + return 1; |
| 146 | + } |
| 147 | + |
| 148 | + for (i = 0; i < N_THR; i++) { |
| 149 | + if (!bounce_done[i]) { |
| 150 | + return 0; |
| 151 | + } |
| 152 | + } |
| 153 | + |
| 154 | + return 1; |
| 155 | +} |
| 156 | + |
| 157 | +int barrier_test_done(void) |
| 158 | +{ |
| 159 | + int i; |
| 160 | + |
| 161 | + if (barrier_failed) { |
| 162 | + return 1; |
| 163 | + } |
| 164 | + |
| 165 | + for (i = 0; i < N_THR; i++) { |
| 166 | + if (!barrier_done[i]) { |
| 167 | + return 0; |
| 168 | + } |
| 169 | + } |
| 170 | + |
| 171 | + return 1; |
| 172 | +} |
| 173 | + |
| 174 | +void main(void) |
| 175 | +{ |
| 176 | + int i, ret, min_prio, max_prio, status = TC_FAIL; |
| 177 | + pthread_attr_t attr[N_THR]; |
| 178 | + struct sched_param schedparam; |
| 179 | + pthread_t newthread[N_THR]; |
| 180 | + int schedpolicy = SCHED_FIFO; |
| 181 | + void *retval; |
| 182 | + |
| 183 | + TC_START("POSIX thread IPC APIs\n"); |
| 184 | + schedparam.priority = CONFIG_NUM_COOP_PRIORITIES - 1; |
| 185 | + min_prio = sched_get_priority_min(schedpolicy); |
| 186 | + max_prio = sched_get_priority_max(schedpolicy); |
| 187 | + |
| 188 | + if (min_prio < 0 || max_prio < 0 || schedparam.priority < min_prio || |
| 189 | + schedparam.priority > max_prio) { |
| 190 | + TC_ERROR("Scheduling priority outside valid priority range\n"); |
| 191 | + goto done; |
| 192 | + } |
| 193 | + |
| 194 | + for (i = 0; i < N_THR; i++) { |
| 195 | + ret = pthread_attr_init(&attr[i]); |
| 196 | + if (ret != 0) { |
| 197 | + TC_ERROR("Thread attribute initialization failed\n"); |
| 198 | + goto done; |
| 199 | + } |
| 200 | + pthread_attr_setstack(&attr[i], &stacks[i][0], STACKSZ); |
| 201 | + pthread_attr_setschedpolicy(&attr[i], schedpolicy); |
| 202 | + pthread_attr_setschedparam(&attr[i], &schedparam); |
| 203 | + ret = pthread_create(&newthread[i], &attr[i], thread_top, |
| 204 | + (void *)i); |
| 205 | + |
| 206 | + if (ret != 0) { |
| 207 | + TC_ERROR("Number of threads exceeds maximum limit\n"); |
| 208 | + goto done; |
| 209 | + } |
| 210 | + |
| 211 | + } |
| 212 | + |
| 213 | + while (!bounce_test_done()) { |
| 214 | + k_sem_take(&main_sem, K_FOREVER); |
| 215 | + } |
| 216 | + |
| 217 | + if (bounce_failed) { |
| 218 | + goto done; |
| 219 | + } |
| 220 | + |
| 221 | + TC_PRINT("Bounce test OK\n"); |
| 222 | + |
| 223 | + /* Wake up the worker threads */ |
| 224 | + pthread_mutex_lock(&lock); |
| 225 | + pthread_cond_broadcast(&cvar1); |
| 226 | + pthread_mutex_unlock(&lock); |
| 227 | + |
| 228 | + while (!barrier_test_done()) { |
| 229 | + k_sem_take(&main_sem, K_FOREVER); |
| 230 | + } |
| 231 | + |
| 232 | + if (barrier_failed) { |
| 233 | + goto done; |
| 234 | + } |
| 235 | + |
| 236 | + for (i = 0; i < N_THR; i++) { |
| 237 | + pthread_join(newthread[i], &retval); |
| 238 | + } |
| 239 | + |
| 240 | + TC_PRINT("Barrier test OK\n"); |
| 241 | + status = TC_PASS; |
| 242 | + |
| 243 | + done: |
| 244 | + TC_END_REPORT(status); |
| 245 | +} |
0 commit comments