@@ -86,6 +86,8 @@ def track_flame_front(ds, metric):
8686 else :
8787 averaged_field .append (0.0 )
8888
89+ averaged_field = np .array (averaged_field )
90+
8991 # Now Determine the index of the maximum radially averaged field
9092 max_index = np .argmax (averaged_field )
9193
@@ -103,8 +105,8 @@ def track_flame_front(ds, metric):
103105 # 5) maximum averaged value
104106 # 6) theta that corresponds to the maximum global value
105107 # 7) maximum global value
106- tracking_data = [str (ds ), time , theta_loc , thetas [max_index ],
107- max (averaged_field ), max_theta_loc , max_val ]
108+ tracking_data = [str (ds ), float ( time ), float ( theta_loc ), float ( thetas [max_index ]) ,
109+ float ( max (averaged_field )), float ( max_theta_loc , max_val ) ]
108110
109111 return tracking_data
110112
@@ -184,7 +186,7 @@ def process_dataset(fname, metric):
184186 tracking_data_array .sort (key = lambda x : x [1 ])
185187
186188 # Write to file
187- columns = ["fname" , "time" , "front_theta" , "theta_max_avg" ,
189+ columns = ["fname" , "time[ms] " , "front_theta" , "theta_max_avg" ,
188190 "max_avg_" + args .field , "theta_max" , "max_global_" + args .field ]
189191
190192 df = pd .DataFrame (tracking_data_array , columns = columns )
0 commit comments