-
Notifications
You must be signed in to change notification settings - Fork 0
Description
import math
Quantum Physics Equations
def eq_not_equal_imc(m, c):
return complex(0, 1) * m * c != m * c
def eq1(l, i, m, c):
return -1 * ((l ** i) * m * c) ** 2
def eq2(m, c):
return (complex(0, 1) * m * c) ** 2
def eq3(m, c):
return -1 * complex(0, 1) * m * c ** 2
def eq4(m, c):
return complex(0, 1) * m * c ** 2
def eq5(l, i, m, c):
return -1 * ((l ** i) * m * c) ** 2
def eq6(i, m, c):
return (complex(0, 1) * m * c) ** 2
def eq7(l, i, m, c):
return -1 * m * (l ** i) * c ** 2
def eq8(m, c):
return m * complex(0, 1) * c ** 2
def eq9(m, c, r):
return (m * c / (2 * math.pi * r)) ** 2
def eq10(l, i, m, c, r):
return -1 * ((l ** i) * m * c / (2 * math.pi * r)) ** 2
def eq11(m, c):
return m * c ** 2
def eq12(l, i):
return -1 * (l ** i)
def eq13(l, i):
return (l ** i) ** 2
Electric Potential Equation
def electric_potential(k, q, r):
return k * q / r
Logical Functions
def f_d3_3():
return 3 == 1
def f_d0_0():
return 0 * 0 == 1
def f_d7_0():
return 0 * 0 == 1
def f_d_10_infinity():
return 10 >= float('inf')
def f_d3_1():
return 1 == 3
def f_d1_1_div_1():
return 1 / 1 == 3
def f_d2_2():
return 2 == 3
def f_d2_1():
return 2 == 1
Exponential Value Measurement Based on Partitions
def exponential_measurement_part1(dimension):
return math.exp(dimension) # Example operation with e^dimension
def exponential_measurement_part2(dimension):
return math.exp(dimension) * 2 # Example operation with 2 * e^dimension
def exponential_measurement_part3(dimension):
return math.exp(dimension) / 2 # Example operation with (1/2) * e^dimension
New Equation Function
def analyze_transition():
# D_{10} \xrightarrow{T_{10 \to 0}} D_0 \xrightarrow{T_{0 \to 3}} D_3 \xrightarrow{f_{sep-con}} D_3
d0 = transition_10_to_0()
d3 = transition_0_to_3(d0)
d3_sep_con = function_sep_con(d3)
# D_3 \xrightarrow{f_{D_3}} D_3
d3_f = function_d3(d3_sep_con)
# Exponential Measurement based on partitions
if d3_f <= 3:
exponential_value = exponential_measurement_part1(d3_f)
elif 3 < d3_f <= 6:
exponential_value = exponential_measurement_part2(d3_f)
else:
exponential_value = exponential_measurement_part3(d3_f)
# \xrightarrow{\lim_{x \to \infty}} D_3
d3_lim = limit_to_infinity(exponential_value)
# \xrightarrow{T_{3 \to 10}} D_{10}
d10_final = transition_3_to_10(d3_lim)
return d10_final
def transition_10_to_0():
# Define transition logic from dimension 10 to 0
return 0
def transition_0_to_3(d0):
# Define transition logic from dimension 0 to 3
return 3
def function_sep_con(d3):
# Define the separation-connection function for dimension 3
return d3
def function_d3(d3):
# Define the function for dimension 3
return d3
def limit_to_infinity(value):
# Define the limit logic as x approaches infinity
return value # This is a simplification; real logic might be more complex
def transition_3_to_10(d3):
# Define transition logic from dimension 3 to 10
return 10
Function to Find Potential Cures
def find_potential_cures():
# Perform operations related to finding potential cures
result = ""
for term in simple_library:
result += f"Analyzing potential cure for {term}...\n"
# Placeholder for actual analysis or data retrieval
# Simulate some analysis here using the new equation function
analysis_result = analyze_transition()
result += f"Analysis completed for {term}. Potential cure found with analysis result: {analysis_result}\n\n"
# Outputting results
result += "Potential cures found based on quantized point properties.\n"
return result
Simple Library
simple_library = ["virus", "disease", "infection"]
Main Execution
if name == "main":
# Example usage of equations
m = 1 # Example value for mass
c = 1 # Example value for speed of light
l = 1 # Example value for lambda
i = 1 # Example value for imaginary unit
r = 1 # Example value for radius
print("Quantum Physics Equations Results:")
print("E≠imc:", eq_not_equal_imc(m, c))
print("E=(-1)((λ^i)mc)²:", eq1(l, i, m, c))
print("E≠(imc)²:", eq2(m, c))
print("E=(-1)imc²:", eq3(m, c))
print("E≠imc²:", eq2(m, c))
print("E=(-1)imc²:", eq3(m, c))
print("E=(-1)((λ^i)(mc))²:", eq1(l, i, m, c))
print("E≠((i)(mc))²:", eq6(i, m, c))
print("E≠(-1)m(λ^i)c²:", eq7(l, i, m, c))
print("E≠mic²:", eq8(m, c))
print("±E=(mc/2πr)²:", eq9(m, c, r))
print("E≠cim²:", eq8(m, c))
print("E≠c²mi²:", eq8(m, c))
print("E=mc²:", eq11(m, c))
print("E=(-1)(λ^i):", eq12(l, i))
print("E=(λ^i)²:", eq13(l, i))
# Example usage of logical functions
print("\nLogical Functions Results:")
print("f{d3}|3:=1:", f_d3_3())
print("f{d0}|0*0:=1:", f_d0_0())
print("f{d7}|0*0:=1:", f_d7_0())
print("f{d|10|}|10|≥∞:", f_d_10_infinity())
print("f{d3}|1:=3:", f_d3_1())
print("f{d1}|1÷1=3:", f_d1_1_div_1())
print("f{d2}|2:=3:", f_d2_2())
print("f{d2}|2:=1:", f_d2_1())
# Finding potential cures
print("\nPotential Cures Analysis:")
print(find_potential_cures())