@@ -149,15 +149,15 @@ Check out this [tutorial](tutorial/train_shape.ipynb) if you are new to this. Yo
149149### 3.c. Train a custom dataset with pretrained weights (Highly Recommended)
150150
151151 # train efficientdet-d2 on a custom dataset with pretrained weights
152- # with batchsize 8 and learning rate 1e-5 for 10 epoches
152+ # with batchsize 8 and learning rate 1e-3 for 10 epoches
153153
154- python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-5 --num_epochs 10 \
154+ python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-3 --num_epochs 10 \
155155 --load_weights /path/to/your/weights/efficientdet-d2.pth
156156
157157 # with a coco-pretrained, you can even freeze the backbone and train heads only
158158 # to speed up training and help convergence.
159159
160- python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-5 --num_epochs 10 \
160+ python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-3 --num_epochs 10 \
161161 --load_weights /path/to/your/weights/efficientdet-d2.pth \
162162 --head_only True
163163
@@ -170,7 +170,7 @@ Check out this [tutorial](tutorial/train_shape.ipynb) if you are new to this. Yo
170170
171171 # let says you started a training session like this.
172172
173- python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-5 \
173+ python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-3 \
174174 --load_weights /path/to/your/weights/efficientdet-d2.pth \
175175 --head_only True
176176
@@ -179,7 +179,7 @@ Check out this [tutorial](tutorial/train_shape.ipynb) if you are new to this. Yo
179179 # now you want to resume training from the last checkpoint
180180 # simply set load_weights to 'last'
181181
182- python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-5 \
182+ python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-3 \
183183 --load_weights last \
184184 --head_only True
185185
@@ -193,7 +193,7 @@ Check out this [tutorial](tutorial/train_shape.ipynb) if you are new to this. Yo
193193### 7. Debug training (optional)
194194
195195 # when you get bad result, you need to debug the training result.
196- python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-5 --debug True
196+ python train.py -c 2 -p your_project_name --batch_size 8 --lr 1e-3 --debug True
197197
198198 # then checkout test/ folder, there you can visualize the predicted boxes during training
199199 # don't panic if you see countless of error boxes, it happens when the training is at early stage.
0 commit comments