A collection of publicly available datasets for hyperspectral imaging research.
Name | Year | Task | URL | #Images | Size (WxH) | #Bands | Wavelength | Spectral Resolution |
---|---|---|---|---|---|---|---|---|
Pinot Noir maturity status HS Dataset1 | 2025 | regression | https://github.com/hlyu821/GANs | 9 | - (1800 pixel) | 186 | 406.8-995.8 | 3.26 |
HSOD-BIT-V22 | 2025 | salient object detection | https://github.com/QYH-BIT/HSOD-BIT-V2?tab=readme-ov-file | 500 | 1240x1680 | 200 | 400-1000 | 3 |
hyperspectral image datasets-almond, pistachio, and garlic stems3 | 2024 | anomaly detection | https://ieee-dataport.org/documents/anomaly-detection-hyperspectral-imaging-food-safety-inspection | 12? | 400x512 | 224 | 400-1000 | - |
VIS-NIR HSI database D24 | 2024 | - | https://github.com/bianlab/Hyperspectral-imaging-dataset | 500 | 640x660 | 131 | 400-1700 | 10 |
VIS-NIR HSI database D15 | 2024 | - | https://github.com/bianlab/Hyperspectral-imaging-dataset | 500 | 960x1230 | 61 | 400-1000 | 10 |
PENGUIN HS IMAGE DATASET6 | 2024 | classification | https://033labcodes.github.io/igrass24_penguin/ | 990 | 2048x1080 | 151 | 350-1100 | 5 |
Living Optics Orchard Dataset7 | 2024 | segmentation | https://huggingface.co/datasets/LivingOptics/hyperspectral-orchard | 435 | - | 96 | 440-900 | - |
Living Optics Hyperspectral Fruit Dataset8 | 2024 | classification segmentation |
https://huggingface.co/datasets/LivingOptics/hyperspectral-fruit | 100 | - | - | 440-900? | - |
Hyperspectral image dataset of unstructured terrains for UGV perception9 | 2024 | classification segmentation |
https://ieee-dataport.org/documents/hyperspectral-image-dataset-unstructured-terrains-ugv-perception | 137 | 512x512 | 204 | 400-1000 | 7 |
Hyperspectral Object Tracking Challenge 202410 | 2024 | object tracking | https://www.hsitracking.com/ | - | - | - | - | - |
HyperLeaf202411 | 2024 | classification | https://www.kaggle.com/competitions/HyperLeaf2024 | 2410 | 512x512 | 204 | 400-1000 | 7 |
Hydrocarbon Spill Hyperspectral Dataset12 | 2024 | classification | https://ieee-dataport.org/documents/hydrocarbon-spill-hyperspectral-dataset-hshd | 116 | 1024x1024 | 20 | 400-1000 | - |
DeepHS Debris13 | 2024 | classification | https://cogsys.cs.uni-tuebingen.de/webprojects/DeepHS-Debris-2024-Datasets/ | 860 | - | 200? | 400-1700 | - |
CloudPatch-714 | 2024 | classification | https://ieee-dataport.org/documents/cloudpatch-7-hyperspectral-dataset | 444 | 50x50 | 462 | 400-1000 | 1.90 |
Cabbage Eggplant Hyperspectral datasets15 | 2024 | classification | https://data.mendeley.com/datasets/whgnf4s4bp/1 https://data.mendeley.com/datasets/t4rysh9rxf/1 https://data.mendeley.com/datasets/cww6zkdcmb/1 |
- | - | - | 400-900 | 3 |
Beyond RGB16 | 2024 | - | https://github.com/shirawerman/Beyond-RGB | 1680 | 2584x1936 | 16 | 380-730 | - |
BJTU-UVA17 | 2024 | calibration | https://github.com/duranze/Automatic-spectral-calibration-of-HSI | 765 | 512x512 | 204 | 400-1000 | 3nm |
UWA Hyperspectral Face Database18 | 2023 | face recognition | https://ieee-dataport.org/documents/uwa-hyperspectral-face-database | 120 | - | 33 | 400-720 | 10 |
MobiSpectral19 | 2023 | hsi reconstruction | https://github.com/mobispectral/mobicom23_mobispectral/ | 346 | 512x512 | 204 | 400-1000 | - |
HyperPRI20 | 2023 | segmentation | https://github.com/GatorSense/HyperPRI?tab=readme-ov-file | 748 | - | 299 | 400-1000 | 2 |
Hyper-Skin21 | 2023 | hsi reconstruction | https://hyper-skin-2023.github.io/ | 330 | 1024x1024 | 448 | 400-1000 | 1.34 |
HOD3K22 | 2023 | object detection | https://github.com/hexiao0275/S2ADet | 3242 | 512x256 | 16 | 470-620 | - |
DeepHS Fruit v223 | 2023 | classification | https://github.com/cogsys-tuebingen/deephs_fruit | 4671 | - | - | 400-1000/920-1727/408-900 | 3/3/2 |
TOHS Dataset24 | 2022 | 3D reconstruction | https://ieee-dataport.org/documents/tufts-outdoor-hyperspectral-dataset | 100 | 410x410 | 164 | 350-1002 | 4 |
LIB-HSI25 | 2022 | classification segmentation |
https://data.csiro.au/collection/csiro%3A55630v4 | 513 | 512x512 | 204 | 400-1000 | - |
HSIFoodIngr-6426 | 2022 | classification segmentation |
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/E7WDNQ | 3389 | 512x512 | 204 | 400-1000 | - |
HSICityV227 | 2022 | segmentation | https://isis-data.science.uva.nl/cv/HyperspectralCityV2.0/ | 1330 | 1889x1422 | 128 | 450-950 | - |
ARAD 1K28 | 2022 | hsi reconstruction | https://github.com/boazarad/ARAD_1K?tab=readme-ov-file | 1000 | 482x512 | 31 | 400-700 | - |
Pasta Dataset29 | 2021 | classification regression |
https://data.mendeley.com/datasets/yhyzmp8rtb/2 | 50? | - | - | 350-2500 | - |
OMHS30 | 2021 | hsi reconstruction | https://ieee-dataport.org/documents/omhs-objects-mosaic-hyperspectral-database | 10666 | 256x256 | 29 | 420-700 | - |
HSI-131 | 2021 | object detection | https://github.com/yanlongbinluck/HSI-Object-Detection-NPU | 454 | 696x860 | 128 | 400-1000 | 0.58 |
Near Infrared Hyperspectral Image Dataset32 | 2020 | classification | https://github.com/hacarus/hsi-open-dataset | 96 | 192x256 | - | 1300-2150 | 9.8 |
Ladybird Cobbitty 2017 Brassica Dataset33 | 2020 | classification object detection segmentation |
http://hdl.handle.net/2123/20187 | - | - | - | - | - |
HSI Road34 | 2020 | segmentation | https://github.com/NUST-Machine-Intelligence-Laboratory/hsi_road | 3799 | 192x384 | 25 | 680-960 | - |
HFD10035 | 2020 | classification | https://github.com/ying-fu/HFD100 | 10738 | 696x520 | 256 | 376.8-1075.8 | 2.73 |
TokyoTech 59-band Visible-NIR Hyperspectral Image Dataset36 | 2019 | - | http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata59.html | 16 | - | 59 | 400-1000 | - |
Dataset for Hyperspectral Clinical Applications37 | 2019 | classification | https://ieee-dataport.org/open-access/dataset-parallel-implementations-assessment-spatial-spectral-classifier-hyperspectral | 3 | 1000x1000 | 100 | - | - |
Cocoa beans spectral image38 | 2019 | classification | https://ieee-dataport.org/documents/cocoa-beans-spectral-image-three-fermentation-levels | - | - | - | - | - |
HSIDermoscopy39 | 2018 | classification | https://github.com/heugyy/HSIDermoscopy | - | - | - | - | - |
HS-SOD (HyperSpectral Salient Object Detection Dataset)40 | 2018 | salient object detection | https://github.com/gistairc/HS-SOD?tab=readme-ov-file | - | - | - | - | - |
GHIFVD41 | 2018 | - | https://www.allpsych.uni-giessen.de/GHIFVD/ | - | - | - | - | - |
HyKo42 | 2017 | scene understanding | https://wp.uni-koblenz.de/hyko/ | - | - | - | - | - |
ICVL43 | 2016 | hsi reconstruction | https://huggingface.co/datasets/danaroth/icvl | - | - | - | - | - |
Real-World Hyperspectral Images Database44 | 2011 | - | https://vision.seas.harvard.edu/hyperspec/download.html | - | - | - | - | - |
Tecnalia Hyperspectral Dataset45 | 2010 | classification | https://zenodo.org/records/12565131 | - | - | - | - | - |
CAVE46 | 2008 | - | https://cave.cs.columbia.edu/repository/Multispectral | - | - | - | - | - |
This repository is maintained by 033 Laboratory at Tokyo Denki University. The following individuals are responsible for maintaining this repository:
-
Keita Ogawa
- Email: [email protected]
-
Youta Noboru
- Email: [email protected]
If you have any questions or suggestions, please feel free to contact the maintainers via the provided email address or by openng an issue in this repository.
We would like to express our sincere gratitude to the researchers, institutions, and organizations who have contributed to the development and sharing of hyperspectral datasets.
Footnotes
-
H. Lyu, M. Grafton, T. Ramilan, M. Irwin, and E. Sandoval, “Synthetic hyperspectral reflectance data augmentation by generative adversarial network to enhance grape maturity determination,” Computers and Electronics in Agriculture, vol. 235. Elsevier BV, p. 110341, Aug. 2025. doi: 10.1016/j.compag.2025.110341. ↩
-
Y. Qiu, S. Bai, T. Xu, P. Liu, H. Qin, and J. Li, "HSOD-BIT-V2: A Challenging Benchmark for Hyperspectral Salient Object Detection," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, no. 6, pp. 6630–663 ↩
-
J. Lee, M. Kim, J. Yoon, K. Yoo and S.-J. Byun, "Anomaly detection with hyperspectral imaging for food safety inspection", 2024. ↩
-
Bian, L., Wang, Z., Zhang, Y. et al. A broadband hyperspectral image sensor with high spatio-temporal resolution. Nature 635, 73–81 (2024). do10.1038/s41586-024-08109-1 ↩
-
Bian, L., Wang, Z., Zhang, Y. et al. A broadband hyperspectral image sensor with high spatio-temporal resolution. Nature 635, 73–81 (2024). do10.1038/s41586-024-08109-1 ↩
-
Y. Noboru, Y. Ozasa, and M. Tanaka, “Hyperspectral Image Dataset for Individual Penguin Identification,” IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. 9383–9387, Jul. 07, 2024. doi: 10.1109/igarss53475.2024.10642522. ↩
-
S. Cho, E. Sheppard, E. Castello, A. Spanellis, D. Pearce, and S. Chappell, "A case study on the integration of a snapshot hyperspectral field-portable imager solving fruit quality assessment," in Photonic Instrumentation Engineering XII, vol. 13373, pp. 15–46, SPIE, Mar. 2025. ↩
-
Living Optics, "hyperspectral-fruit," Hugging Face, 2024. [Online]. Available: https://huggingface.co/datasets/LivingOptics/hyperspectral-fruit. [Accessed: Apr. 22, 2025]. ↩
-
Dhanushka Liyanage, Mart Tamre, Robert Hudjakov, February 3, 2024, "Hyperspectral image dataset of unstructured terrains for UGV perception", IEEE Dataport, doi: https://dx.doi.org/10.21227/13bf-pa49. ↩
-
F. Xiong, J. Zhou, C. Wouter, Y. Zhong, G. Pedram, and C. Jocelyn, “The hyperspectral object tracking challenge (HOT2024),” [Online]. Available: https://www.hsitracking.com/, 2024. ↩
-
W. M. Laprade et al., “HyperLeaf2024 – A Hyperspectral Imaging Dataset for Classification and Regression of Wheat Leaves,” 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1234–1243, Jun. 2024, doi: 10.1109/cvprw63382.2024.00130. ↩
-
David Rivas-Lalaleo, Carlos Hernandez, December 5, 2024, "Hydrocarbon Spill Hyperspectral Dataset (HSHD", IEEE Dataport, doi: https://dx.doi.org/10.21227/4etm-h961. ↩
-
Frank, H., Vetter, K., Varga, L.A., Wolff, L., Zell, A. (2025). Hyperspectral Imaging for Characterization of Construction Waste Material in Recycling Applications. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15316. Springer, Cham. https://doi.org/10.1007/978-3-031-78444-6_11 ↩
-
Hua Yan, Rachel Zheng, Shivaji Mallela, Brandon Boehm, Sameer Shaga, Derienne Black, Luis Cueva Parra, Randy Russell, Olcay Kursun, May 18, 2024, "CloudPatch-7 Hyperspectral Dataset", IEEE Dataport, doi: https://dx.doi.org/10.21227/fgb9-qs51. ↩
-
V. K. Munipalle, U. R. Nelakuditi, M. K. C.V.S.S., and R. R. Nidamanuri, “Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications,” Data in Brief, vol. 55. Elsevier BV, p. 110649, Aug. 2024. doi: 10.1016/j.dib.2024.110649. ↩
-
O. Glatt et al., "Beyond RGB: A Real World Dataset for Multispectral Imaging in Mobile Devices," 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2024, pp. 4332-4342, doi: 10.1109/WACV57701.2024.00429. ↩
-
Z. Du, S. You, C. Cheng, and S. Wei, “Automatic Spectral Calibration of Hyperspectral Images: Method, Dataset and Benchmark,” arXiv preprint arXiv:2412.14925, 2024. [Online]. Available: https://arxiv.org/abs/2412.14925 ↩
-
Muhammad Uzair, Zohaib Khan, Arif Mahmood, Faisal Shafait, Ajmal Mian, March 28, 2023, "UWA Hyperspectral Face Database", IEEE Dataport, doi: https://dx.doi.org/10.21227/8714-kx37. ↩
-
N. Sharma, M. S. Waseem, S. Mirzaei, and M. Hefeeda, “MobiSpectral: Hyperspectral Imaging on Mobile Devices,” in Proc. 29th Annu. Int. Conf. Mobile Computing and Networking (ACM MobiCom), Madrid, Spain, 2023, doi: 10.1145/3570361.3613296. ↩
-
S. J. Chang et al., “HyperPRI: A Dataset of Hyperspectral Images for Underground Plant Root Study.” Harvard Dataverse, 2023. doi: doi:10.7910/DVN/MAYDHT. ↩
-
Pai Chet Ng, Zhixiang Chi, Yannick Verdie, Juwei Lu, and Konstantinos N. Plataniotis, "Hyper-Skin: a hyperspectral dataset for reconstructing facial skin-spectra from RGB images," Proceedings of the 37th International Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 2023, Art. no. 1050, pp. 1-13. ↩
-
X. He, C. Tang, X. Liu, W. Zhang, K. Sun and J. Xu, "Object Detection in Hyperspectral Image via Unified Spectral–Spatial Feature Aggregation," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-13, 2023, Art no. 5521213, doi: 10.1109/TGRS.2023.3307288. ↩
-
L. A. Varga, J. Makowski and A. Zell, "Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep Learning," 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-8, doi: 10.1109/IJCNN52387.2021.9533728. ↩
-
A. Stone, S. P. Rao, S. Rajeev, K. Panetta and S. Agaian, "A Comprehensive 2D + 3D Dataset for Benchmarking Hyperspectral Imaging Systems," 2022 IEEE International Symposium on Technologies for Homeland Security (HST), Boston, MA, USA, 2022, pp. 1-5, doi: 10.1109/HST56032.2022.10024982. ↩
-
N. Habili, E. Kwan, W. Li, C. Webers, J. Oorloff, M. A. Armin, and L. Petersson, “A hyperspectral and RGB dataset for building façade segmentation,” in Proc. ECCV 2022 Workshops, Tel Aviv, Israel, Oct. 23–27, 2022, Part VII, pp. 258–267, Springer, 2023. ↩
-
X. Xia, W. Liu, L. Wang and J. Sun, "HSIFoodIngr-64: A Dataset for Hyperspectral Food-Related Studies and a Benchmark Method on Food Ingredient Retrieval," in IEEE Access, vol. 11, pp. 13152-13162, 2023, doi: 10.1109/ACCESS.2023.3243243. ↩
-
Y. Huang, T. Ren, Q. Shen, Y. Fu, and S. You, “HSICityV2: Urban Scene Understanding via Hyperspectral Images,” Zenodo, 2021. [Online]. Available: https://doi.org/10.5281/zenodo.703085 ↩
-
B. Arad et al., "NTIRE 2022 Spectral Recovery Challenge and Data Set," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 862-880, doi: 10.1109/CVPRW56347.2022.00102. ↩
-
Bonifazi, Giuseppe; Gasbarrone, Riccardo; Capobianco, Giuseppe; Serranti, Silvia (2021), “A dataset of Visible – Short Wave InfraRed reflectance spectra collected on pre-cooked pasta products”, Mendeley Data, V2, doi: 10.17632/yhyzmp8rtb.2 ↩
-
Jonathan Hauser, Gal Shtendel, Amit Zeligman, Amir Averbuch, Menachem Nathan, Moshe Salhov, May 5, 2021, "OMHS - The Objects Mosaic Hyperspectral Database", IEEE Dataport, doi: https://dx.doi.org/10.21227/36g6-r506. ↩
-
L. Yan, M. Zhao, X. Wang, Y. Zhang and J. Chen, "Object Detection in Hyperspectral Images," in IEEE Signal Processing Letters, vol. 28, pp. 508-512, 2021, doi: 10.1109/LSP.2021.3059204. ↩
-
hacarus, “GitHub - hacarus/hsi-open-dataset,” GitHub, 2020. https://github.com/hacarus/hsi-open-dataset (accessed Apr. 19, 2025). ↩
-
A. Bender, B. Whelan, and S. Sukkarieh, “A high-resolution, multimodal data set for agricultural robotics: A Ladybird's-eye view of Brassica,” J. Field Robot., vol. 37, no. 1, pp. 73–96, 2020, doi: 10.1002/rob.21877. ↩
-
J. Lu, H. Liu, Y. Yao, S. Tao, Z. Tang and J. Lu, "Hsi Road: A Hyper Spectral Image Dataset For Road Segmentation," 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 2020, pp. 1-6, doi: 10.1109/ICME46284.2020.9102890. ↩
-
Y. Zheng, T. Zhang, and Y. Fu, “A large-scale hyperspectral dataset for flower classification,” Knowledge-Based Systems, vol. 236. Elsevier BV, p. 107647, Jan. 2022. doi: 10.1016/j.knosys.2021.107647. ↩
-
Y. Monno, H. Teranaka, K. Yoshizaki, M. Tanaka, and M. Okutomi, “Single-sensor RGB-NIR imaging: High-quality system design and prototype implementation,” IEEE Sens. J., vol. 19, no. 2, pp. 497–507, 2018. ↩
-
Himar Fabelo, Samuel Ortega, Raquel León, Gustavo Callico, August 28, 2019, "Dataset: Parallel Implementations Assessment of a Spatial-Spectral Classifier for Hyperspectral Clinical Applications", IEEE Dataport, doi: https://dx.doi.org/10.21227/pn25-nj87. ↩
-
Carlos Hinojosa, Karen Sanchez, Hans Garcia, Henry Arguello, December 10, 2019, "Cocoa beans spectral image with three fermentation levels", IEEE Dataport, doi: https://dx.doi.org/10.21227/esks-4b74. ↩
-
Y. Gu, Y.-P. Partridge, and J. Zhou, “A Hyperspectral Dermoscopy Dataset for Melanoma Detection,” Lecture Notes in Computer Science. Springer International Publishing, pp. 268–276, 2018. doi: 10.1007/978-3-030-01201-4_29. ↩
-
N. Imamoglu, Y. Oishi, X. Zhang, G. Ding, Y. Fang, T. Kouyama, and R. Nakamura, “Hyperspectral image dataset for benchmarking on salient object detection,” in Proc. 10th Int. Conf. Quality of Multimedia Experience (QoMEX), 2018, pp. 1–3, doi: 10.1109/QoMEX.2018.8463428. ↩
-
R. Ennis, F. Schiller, M. Toscani, and K. R. Gegenfurtner, “Hyperspectral database of fruits and vegetables,” Journal of the Optical Society of America A, vol. 35, no. 4. Optica Publishing Group, p. B256, Mar. 14, 2018. doi: 10.1364/josaa.35.00b256. ↩
-
C. Winkens, F. Sattler, V. Adams and D. Paulus, “HyKo: A Spectral Dataset for Scene Understanding,” 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, 2017, pp. 254-261. ↩
-
B. Arad and O. Ben-Shahar, “Sparse Recovery of Hyperspectral Signal from Natural RGB Images,” Computer Vision – ECCV 2016, pp. 19–34, 2016, doi: https://doi.org/10.1007/978-3-319-46478-7_2. ↩
-
A. Chakrabarti and T. Zickler, "Statistics of real-world hyperspectral images," CVPR 2011, Colorado Springs, CO, USA, 2011, pp. 193-200, doi: 10.1109/CVPR.2011.5995660. ↩
-
A. Picon, O. Ghita, P. M. Iriondo, A. Bereciartua and P. F. Whelan, "Automation of waste recycling using hyperspectral image analysis," 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), Bilbao, Spain, 2010, pp. 1-4, doi: 10.1109/ETFA.2010.5641201. ↩
-
F. Yasuma, T. Mitsunaga, D. Iso and S. K. Nayar, "Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum," in IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2241-2253, Sept. 2010, doi: 10.1109/TIP.2010.2046811. ↩