Skip to content

18kredapple/Multi-LLM-Agent

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-LLM-Agent-With_RAG ( 🤖)

This is a Retrieval-Augmented Generation (RAG)-based multi-modal AI assistant that leverages advanced AI models to provide intelligent, context-aware responses to various types of input including text, images, code, and voice. This project uses the following models:

Features

  • Text Assistance: Handle general text-based queries.
  • Code Assistance: Provide coding assistance and help with code-related queries.
  • Image Analysis: Analyze and describe images.
  • Voice Recognition: Convert spoken language into text.

Project Structure

Generative agent/
├── models/
│   ├── llama.py
│   ├── phi_vision.py
│   ├── granite.py
│   └── whisper_asr.py
├── chains/
│   ├── language_assistant.py
│   ├── code_assistant.py
│   └── vision_assistant.py
├── utils/
│   └── image_processor.py
├── agent/
│   ├── tools/
│   │   └── uml_to_code.py
│   ├── prompt_templates.py
│   └── llm_agent.py
└── app.py

Getting Started

Prerequisites

  • Python 3.8 or higher
  • Streamlit
  • Required Python packages listed in requirements.txt

Installation

  1. Clone the repository:

    git clone [https://github.com/your-username/agent-nesh.git](https://github.com/ganeshnehru/RAG-Multi-Modal-Generative-AI-Agent.git)
    cd RAG-Multi-Modal-Generative-AI-Agent
  2. Create a virtual environment and activate it:

    python3 -m venv venv
    source venv/bin/activate  # On Windows, use `venv\Scripts\activate`
  3. Install the required packages:

    pip install -r requirements.txt
  4. Set up environment variables:

    • Create a .env file in the root directory.
    • Add your NVIDIA_API_KEY and OPENAI_API_KEY.

Running the Application

  1. Run the Streamlit application:

    streamlit run app.py
  2. Open your browser and navigate to the provided URL to interact with Agent-Nesh.

Usage

  • Text Queries: Type your text queries in the provided input box and get responses from the language model.
  • Code Assistance: Enter your coding queries to receive code assistance.
  • Image Analysis: Upload images for analysis and description.
  • Voice Input: Use the voice input feature to transcribe spoken language into text.

Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 74.9%
  • Python 25.1%