Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9,593 changes: 9,593 additions & 0 deletions data/processed/test.csv

Large diffs are not rendered by default.

38,433 changes: 38,433 additions & 0 deletions data/processed/train.csv

Large diffs are not rendered by default.

49,081 changes: 49,081 additions & 0 deletions data/raw/AB_NYC_2019.csv

Large diffs are not rendered by default.

49,081 changes: 49,081 additions & 0 deletions data/raw/internal-link.csv

Large diffs are not rendered by default.

56 changes: 56 additions & 0 deletions src/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,59 @@
engine = db_connect()

# your code here

import os
import pandas as pd
from sklearn.model_selection import train_test_split


RAW_PATH = os.path.join("data", "raw", "AB_NYC_2019.csv")
OUT_DIR = os.path.join("data", "processed")


def load_data(path):
if not os.path.exists(path):
raise FileNotFoundError("No existe el archivo en: " + path)
return pd.read_csv(path)


def clean_data(df):
df_clean = df.copy()

df_clean["last_review"] = pd.to_datetime(df_clean["last_review"], errors="coerce")
df_clean["reviews_per_month"] = df_clean["reviews_per_month"].fillna(0)

df_clean["name"] = df_clean["name"].fillna("unknown")
df_clean["host_name"] = df_clean["host_name"].fillna("unknown")

df_clean = df_clean[df_clean["price"].between(1, 500)]

return df_clean


def split_and_save(df, out_dir):
os.makedirs(out_dir, exist_ok=True)

train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)

train_path = os.path.join(out_dir, "train.csv")
test_path = os.path.join(out_dir, "test.csv")

train_df.to_csv(train_path, index=False)
test_df.to_csv(test_path, index=False)

print("Guardado train en:", train_path)
print("Guardado test en:", test_path)
print("train shape:", train_df.shape)
print("test shape:", test_df.shape)


def main():
df = load_data(RAW_PATH)
df_clean = clean_data(df)
split_and_save(df_clean, OUT_DIR)


if __name__ == "__main__":
main()

Loading