|
| 1 | +package dataStructures.bTree; |
| 2 | + |
| 3 | +/** This BTree implementation is a simplified implementation, which supports the basic search, insert, delete and |
| 4 | + * in-order traversal operations. It is not designed to cover edge cases. |
| 5 | + */ |
| 6 | +public class BTree { |
| 7 | + private BTreeNode root; |
| 8 | + private int t; |
| 9 | + |
| 10 | + /** |
| 11 | + * Constructs a B-tree with a specified minimum degree. |
| 12 | + * @param t The minimum degree of the B-tree. |
| 13 | + */ |
| 14 | + public BTree(int t) { |
| 15 | + this.root = null; |
| 16 | + this.t = t; |
| 17 | + } |
| 18 | + |
| 19 | + /** Inner class representing a B-tree node |
| 20 | + */ |
| 21 | + private class BTreeNode { |
| 22 | + int[] keys; |
| 23 | + BTreeNode[] children; |
| 24 | + int keyCount; // necessary for Java implementation due to fixed-size arrays |
| 25 | + boolean leaf; |
| 26 | + |
| 27 | + /** |
| 28 | + * Constructor for creating a B-tree node. |
| 29 | + * @param t The minimum degree of the B-tree. |
| 30 | + * @param leaf Indicates whether the node is a leaf. |
| 31 | + */ |
| 32 | + public BTreeNode(int t, boolean leaf) { |
| 33 | + this.keys = new int[2 * t - 1]; |
| 34 | + this.children = new BTreeNode[2 * t]; |
| 35 | + this.keyCount = 0; |
| 36 | + this.leaf = leaf; |
| 37 | + } |
| 38 | + } |
| 39 | + |
| 40 | + /** |
| 41 | + * Searches for a key in the B-tree. |
| 42 | + * @param key The key to search for. |
| 43 | + * @return true if the key is found, false otherwise. |
| 44 | + */ |
| 45 | + public boolean search(int key) { |
| 46 | + return search(key, this.root); |
| 47 | + } |
| 48 | + |
| 49 | + private boolean search(int key, BTreeNode node) { |
| 50 | + int i = 0; |
| 51 | + while (i < node.keyCount && key > node.keys[i]) { |
| 52 | + i++; |
| 53 | + } |
| 54 | + |
| 55 | + if (i < node.keyCount && key == node.keys[i]) { |
| 56 | + return true; |
| 57 | + } |
| 58 | + |
| 59 | + if (node.leaf) { |
| 60 | + return false; |
| 61 | + } else { |
| 62 | + return search(key, node.children[i]); |
| 63 | + } |
| 64 | + } |
| 65 | + |
| 66 | + /** |
| 67 | + * Inserts a key into the B-tree. |
| 68 | + * @param key The key to insert. |
| 69 | + */ |
| 70 | + public void insert(int key) { |
| 71 | + if (this.root == null) { |
| 72 | + this.root = new BTreeNode(this.t, true); |
| 73 | + this.root.keys[0] = key; |
| 74 | + this.root.keyCount = 1; |
| 75 | + } else { |
| 76 | + if (this.root.keyCount == 2 * t - 1) { // root is full |
| 77 | + BTreeNode newRoot = new BTreeNode(this.t, false); |
| 78 | + newRoot.children[0] = this.root; |
| 79 | + splitChild(newRoot, 0); |
| 80 | + insertNonFull(newRoot, key); |
| 81 | + this.root = newRoot; |
| 82 | + } else { |
| 83 | + insertNonFull(root, key); |
| 84 | + } |
| 85 | + } |
| 86 | + } |
| 87 | + |
| 88 | + /** |
| 89 | + * Splits a child node of the current node during insertion, promoting the middle key to the parent node. |
| 90 | + * This method is called when the child node is full and needs to be split to maintain B-tree properties. |
| 91 | + * @param x The parent node. |
| 92 | + * @param i The index of the child node to split. |
| 93 | + */ |
| 94 | + private void splitChild(BTreeNode x, int i) { |
| 95 | + BTreeNode y = x.children[i]; |
| 96 | + BTreeNode z = new BTreeNode(t, y.leaf); |
| 97 | + |
| 98 | + for (int j = x.keyCount; j >= i; j--) { |
| 99 | + x.children[j + 1] = x.children[j]; |
| 100 | + } |
| 101 | + |
| 102 | + x.children[i + 1] = z; |
| 103 | + x.keys[i] = y.keys[t - 1]; // promote middle key to parent |
| 104 | + x.keyCount++; |
| 105 | + |
| 106 | + for (int j = 0; j < t - 1; j++) { |
| 107 | + z.keys[j] = y.keys[j + t]; |
| 108 | + } |
| 109 | + |
| 110 | + y.keyCount = t - 1; |
| 111 | + z.keyCount = t - 1; |
| 112 | + } |
| 113 | + |
| 114 | + /** |
| 115 | + * Inserts a key into a non-full B-tree node. If the node is full, it recursively splits the necessary child nodes. |
| 116 | + * @param x The current B-tree node. |
| 117 | + * @param key The key to insert. |
| 118 | + */ |
| 119 | + private void insertNonFull(BTreeNode x, int key) { |
| 120 | + int i = x.keyCount - 1; |
| 121 | + |
| 122 | + if (x.leaf) { |
| 123 | + while (i >= 0 && key < x.keys[i]) { |
| 124 | + x.keys[i + 1] = x.keys[i]; |
| 125 | + i--; |
| 126 | + } |
| 127 | + x.keys[i + 1] = key; |
| 128 | + x.keyCount++; |
| 129 | + } else { |
| 130 | + while (i >= 0 && key < x.keys[i]) { |
| 131 | + i--; |
| 132 | + } |
| 133 | + i++; |
| 134 | + |
| 135 | + if (x.children[i].keyCount == 2 * t - 1) { |
| 136 | + splitChild(x, i); |
| 137 | + if (key > x.keys[i]) { |
| 138 | + i++; |
| 139 | + } |
| 140 | + } |
| 141 | + |
| 142 | + insertNonFull(x.children[i], key); |
| 143 | + } |
| 144 | + } |
| 145 | + |
| 146 | + /** |
| 147 | + * Prints the keys of the B-tree level by level. |
| 148 | + */ |
| 149 | + public void printBTree() { |
| 150 | + if (root != null) { |
| 151 | + printBTree(root, 0); |
| 152 | + } |
| 153 | + } |
| 154 | + |
| 155 | + private void printBTree(BTreeNode node, int level) { |
| 156 | + System.out.println("Level " + level + ": " + node.keyCount + " keys"); |
| 157 | + |
| 158 | + for (int i = 0; i < node.keyCount; i++) { |
| 159 | + System.out.print(node.keys[i] + " "); |
| 160 | + } |
| 161 | + System.out.println(); |
| 162 | + |
| 163 | + if (!node.leaf) { |
| 164 | + for (int i = 0; i <= node.keyCount; i++) { |
| 165 | + if (node.children[i] != null) { |
| 166 | + printBTree(node.children[i], level + 1); |
| 167 | + } |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + |
| 172 | + /** |
| 173 | + * Deletes the specified key from the B-tree. |
| 174 | + * @param key key to be deleted |
| 175 | + */ |
| 176 | + public void delete(int key) { |
| 177 | + deleteRecursive(this.root, key); |
| 178 | + } |
| 179 | + private void deleteRecursive(BTreeNode x, int key) { |
| 180 | + int i = 0; |
| 181 | + |
| 182 | + while (i < x.keyCount && key > x.keys[i]){ |
| 183 | + i += 1; |
| 184 | + } |
| 185 | + |
| 186 | + if (i < x.keyCount && key == x.keys[i]) { |
| 187 | + if (x.leaf) { |
| 188 | + for (int curr = i; curr < x.keyCount; curr++) { |
| 189 | + x.keys[curr] = x.keys[curr + 1]; |
| 190 | + } |
| 191 | + x.keyCount -= 1; |
| 192 | + } else { |
| 193 | + BTreeNode y = x.children[i]; |
| 194 | + BTreeNode z = x.children[i + 1]; |
| 195 | + if (y.keyCount >= this.t) { |
| 196 | + int predecessor = getPredecessor(y); |
| 197 | + x.keys[i] = predecessor; |
| 198 | + deleteRecursive(y, predecessor); |
| 199 | + } else if (z.keyCount >= this.t) { |
| 200 | + int successor = getSuccessor(z); |
| 201 | + x.keys[i] = successor; |
| 202 | + deleteRecursive(z, successor); |
| 203 | + } else { |
| 204 | + mergeNodes(x, i, y, z); |
| 205 | + deleteRecursive(y, key); |
| 206 | + } |
| 207 | + } |
| 208 | + } else { |
| 209 | + if (x.leaf) { |
| 210 | + System.out.println("Key " + key + " does not exist in the B-tree."); |
| 211 | + } else { |
| 212 | + if (x.children[i].keyCount < this.t) { |
| 213 | + fixChild(x, i); |
| 214 | + } |
| 215 | + deleteRecursive(x.children[i], key); |
| 216 | + } |
| 217 | + } |
| 218 | + } |
| 219 | + |
| 220 | + /** |
| 221 | + * Retrieves the predecessor key of the given B-tree node. |
| 222 | + * @param x The B-tree node. |
| 223 | + * @return The predecessor key. |
| 224 | + */ |
| 225 | + private int getPredecessor(BTreeNode x) { |
| 226 | + while (!x.leaf) { |
| 227 | + x = x.children[x.keyCount - 1]; |
| 228 | + } |
| 229 | + return x.keys[x.keyCount - 1]; |
| 230 | + } |
| 231 | + |
| 232 | + /** |
| 233 | + * Retrieves the successor key of the given B-tree node. |
| 234 | + * @param x The B-tree node. |
| 235 | + * @return The successor key. |
| 236 | + */ |
| 237 | + public int getSuccessor(BTreeNode x) { |
| 238 | + while (!x.leaf) { |
| 239 | + x = x.children[0]; |
| 240 | + } |
| 241 | + return x.keys[0]; |
| 242 | + } |
| 243 | + |
| 244 | + /** |
| 245 | + * Merges two child nodes of a parent node in a B-tree. |
| 246 | + * This method is called when a child node has fewer keys than required. |
| 247 | + * |
| 248 | + * @param x The parent node. |
| 249 | + * @param i The index of the child node to be merged with its right sibling. |
| 250 | + * @param y The left child node to be merged. |
| 251 | + * @param z The right child node to be merged. |
| 252 | + */ |
| 253 | + private void mergeNodes(BTreeNode x, int i, BTreeNode y, BTreeNode z) { |
| 254 | + // Append the key from the current node to the left child |
| 255 | + y.keys[y.keyCount] = x.keys[i]; |
| 256 | + y.keyCount++; |
| 257 | + |
| 258 | + // Copy the keys and children of the right child to the left child |
| 259 | + System.arraycopy(z.keys, 0, y.keys, y.keyCount, z.keyCount); |
| 260 | + System.arraycopy(z.children, 0, y.children, y.keyCount, z.keyCount); |
| 261 | + |
| 262 | + // Adjust the key count of the left child |
| 263 | + y.keyCount += z.keyCount; |
| 264 | + |
| 265 | + // Remove the key and child reference from the current node |
| 266 | + for (int j = i; j < x.keyCount - 1; j++) { |
| 267 | + x.keys[j] = x.keys[j + 1]; |
| 268 | + x.children[j + 1] = x.children[j + 2]; |
| 269 | + } |
| 270 | + |
| 271 | + // Decrement the key count of the current node |
| 272 | + x.keyCount--; |
| 273 | + |
| 274 | + if (x.keyCount == 0) { |
| 275 | + this.root = y; |
| 276 | + } |
| 277 | + } |
| 278 | + |
| 279 | + /** |
| 280 | + * Fixes a child node of a parent node by borrowing keys or merging with siblings. |
| 281 | + * |
| 282 | + * @param x The parent node. |
| 283 | + * @param i The index of the child node to be fixed. |
| 284 | + */ |
| 285 | + private void fixChild(BTreeNode x, int i) { |
| 286 | + if (i > 0 && x.children[i - 1].keyCount >= t) { |
| 287 | + borrowFromLeft(x, i); |
| 288 | + } else if (i < x.children.length - 1 && x.children[i + 1].keyCount >= t) { |
| 289 | + borrowFromRight(x, i); |
| 290 | + } else { |
| 291 | + if (i > 0) { |
| 292 | + mergeNodes(x, i - 1, x.children[i - 1], x.children[i]); |
| 293 | + i--; // Adjust i after merging |
| 294 | + } else { |
| 295 | + mergeNodes(x, i, x.children[i], x.children[i + 1]); |
| 296 | + } |
| 297 | + } |
| 298 | + } |
| 299 | + |
| 300 | + /** |
| 301 | + * Borrows a key from the left sibling of a child node in a B-tree. |
| 302 | + * |
| 303 | + * @param x The parent node. |
| 304 | + * @param i The index of the child node. |
| 305 | + */ |
| 306 | + private void borrowFromLeft(BTreeNode x, int i) { |
| 307 | + BTreeNode child = x.children[i]; |
| 308 | + BTreeNode sibling = x.children[i - 1]; |
| 309 | + |
| 310 | + // Move key from parent to the beginning of the child |
| 311 | + for (int j = child.keyCount; j > 0; j--) { |
| 312 | + child.keys[j] = child.keys[j - 1]; |
| 313 | + } |
| 314 | + child.keys[0] = x.keys[i - 1]; |
| 315 | + |
| 316 | + // Update parent key with the last key from the sibling |
| 317 | + x.keys[i - 1] = sibling.keys[sibling.keyCount - 1]; |
| 318 | + |
| 319 | + // If not a leaf, move child reference from the sibling to the child |
| 320 | + if (!child.leaf) { |
| 321 | + for (int j = child.keyCount + 1; j > 0; j--) { |
| 322 | + child.children[j] = child.children[j - 1]; |
| 323 | + } |
| 324 | + child.children[0] = sibling.children[sibling.keyCount]; |
| 325 | + } |
| 326 | + |
| 327 | + child.keyCount++; |
| 328 | + sibling.keyCount--; |
| 329 | + } |
| 330 | + |
| 331 | + /** |
| 332 | + * Borrows a key from the right sibling of a child node in a B-tree. |
| 333 | + * |
| 334 | + * @param x The parent node. |
| 335 | + * @param i The index of the child node. |
| 336 | + */ |
| 337 | + private void borrowFromRight(BTreeNode x, int i) { |
| 338 | + BTreeNode child = x.children[i]; |
| 339 | + BTreeNode sibling = x.children[i + 1]; |
| 340 | + |
| 341 | + // Move key from parent to the end of the child |
| 342 | + child.keys[child.keyCount] = x.keys[i]; |
| 343 | + |
| 344 | + // Update parent key with the first key from the sibling |
| 345 | + x.keys[i] = sibling.keys[0]; |
| 346 | + |
| 347 | + // If not a leaf, move child reference from the sibling to the child |
| 348 | + if (!child.leaf) { |
| 349 | + child.children[child.keyCount + 1] = sibling.children[0]; |
| 350 | + |
| 351 | + // Shift keys and children in the sibling |
| 352 | + for (int j = 0; j < sibling.keyCount - 1; j++) { |
| 353 | + sibling.keys[j] = sibling.keys[j + 1]; |
| 354 | + sibling.children[j] = sibling.children[j + 1]; |
| 355 | + } |
| 356 | + sibling.children[sibling.keyCount - 1] = sibling.children[sibling.keyCount]; |
| 357 | + } |
| 358 | + |
| 359 | + child.keyCount++; |
| 360 | + sibling.keyCount--; |
| 361 | + } |
| 362 | + |
| 363 | +} |
0 commit comments